
Articles
https://doi.org/10.1038/s41928-019-0270-x

1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. 2Present address: Samsung Electronics,  
Yongin, Korea. 3These authors contributed equally: Fuxi Cai, Justin M. Correll, Seung Hwan Lee. *e-mail: wluee@umich.edu

Memristors are two-terminal resistive devices that have 
a conductance state that depends on one or more inter-
nal state variables and can be modulated by the history 

of external stimulation1–5. Due to their compact device structure 
and ability to both store and process information at the same physi-
cal location, memristors and memristor crossbar arrays have been 
explored for neuromorphic computing, machine learning and edge 
computing applications5–8. These include single-layer perceptron9–11 
and multi-layer perceptron networks12,13, image transformation14,15, 
sparse coding16, reservoir computing17 and principal component 
analysis (PCA)18. In addition, novel approaches using multiple mem-
ristor devices or mixed-precision architectures have been developed 
to effectively mitigate device non-idealities and allow the devices to 
be used in high-precision computing and training tasks19–24.

Although the key matrix operations can be performed effi-
ciently with memristor crossbar arrays14,15,25, previous implemen-
tations have largely relied on external printed-circuit boards to 
provide the required interface and control circuitry10,14,16, or discrete 
parameter analysers to generate and collect signals9,12,15. In cases 
where memristor arrays are integrated with periphery circuitry, 
the circuit’s function has been limited to providing access devices  
(for example, in the form of 1T1R arrays10,13,14,25) or address decod-
ing purposes26,27. Demonstrating the potential of memristor-based 
computing hardware requires the development of fully functional 
systems, where the memristor crossbars are integrated with nec-
essary analogue interface circuitry (including analogue-to-digital 
converters (ADCs) and digital-to-analogue converters (DACs)), 
digital buses and ideally a programmable processor to control the 
digital and analogue components. Integrating all the necessary 
functions on chip will be key to enabling the practical implementa-
tion of memristor-based computing systems and allowing the pro-
totypes to be scaled to larger systems.

In this Article, we report a fully integrated, functional, reprogram-
mable memristor chip, including a passive memristor crossbar array 
directly integrated with all the necessary interface circuitry, digital 
buses and an OpenRISC processor to form a complete hardware 
system on chip. Thanks to the re-programmability of the memris-
tor crossbar and the integrated complementary metal–oxide–semi-
conductor (CMOS) circuitry, the system is highly flexible and can 
be programmed to implement different computing models and 
network structures. Three widely used models—a perceptron net-
work, a sparse coding algorithm and a bilayer PCA system with an 
unsupervised feature extraction layer and a supervised classification 
layer—are demonstrated experimentally on the same chip.

Fully integrated reprogrammable neuromorphic chip
A memristor crossbar is very efficient at vector-matrix multiplica-
tion (VMM), because the values in the matrix can be stored as the 
analogue device conductances of the crossbar array. When an input 
vector is applied as voltage pulses with different pulse amplitudes 
or different pulse widths to the rows of the crossbar, the currents 
or charges collected at the columns of the crossbar correspond to 
the resulting VMM outputs, following Ohm’s law and Kirchhoff ’s 
current law14,16,25,28. This approach allows direct computing of this 
data-intensive task both in memory and in parallel5,29 in a single 
step, that is O(1), and has attracted broad interest for implementing 
neuromorphic computing and machine learning models28,30,31.

The results from the crossbar are then used to update the 
neuron outputs, which typically require efficient ADC circuits 
that convert the analogue current or charge signals collected at 
the columns to digital signals that can be processed by the artifi-
cial neurons. Similarly, neuron outputs need to be supplied to the 
devices in the crossbar, typically through DAC circuits feeding the 
rows. Controllers are needed to convert the input signals to pulse 
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amplitude or width, and to implement weight update rules dur-
ing training. To reduce latency and power consumption, all these 
components need to be integrated together with the crossbar array 
on a single chip, instead of using discrete components on a board. 
Integrating a processor on chip also allows the neuron functions 
and network structures to be reprogrammed though simple soft-
ware changes, enabling different models to be mapped on the same 
hardware platform.

In this study we have designed and fabricated a complete, 
integrated memristor/CMOS system, with a memristor crossbar 
array integrated on top of CMOS circuits consisting of a full set 
of ADCs, DACs, digital bus, memory and a processor, allowing 
the integrated system to take advantage of the efficiency of the 
matrix operations provided by the memristor crossbar and the 
flexibility offered by the CMOS system to successfully implement 
different algorithms on chip. The system architecture is shown in 
Supplementary Figs. 1 and 2.

We operate the crossbar array in the charge domain to mini-
mize multiplication error due to memristor device I–V nonlinearity 
(Supplementary Note 1). Our approach also simplifies the interface 
circuit design as the input pulses to the crossbar have fixed ampli-
tude and variable widths. The charge-domain technique is enabled 
by a current-integrating hybrid ADC design and a pulse-mode DAC 
scheme (Supplementary Figs. 3 and 4).

Our design features both DACs and ADCs at each row and each 
column for flexibility and to allow bidirectional and full transpose 
operation of the crossbar. For example, inputs x can be applied to 
the rows and the charges collected at the columns correspond to the 
forward operation xTW. If the output neurons’ activities are then 
applied to the columns, the charges collected at the rows then repre-
sent the reconstructed signal, corresponding to multiplication of the 
output neurons’ activities a and the transpose of the weight matrix 
aWT. With DACs and ADCs at each row and column, both forward 
and backward operations can be obtained with the same crossbar 
array16. Furthermore, our design allows all DACs and ADCs at 
each row/column to operate in parallel, thereby supporting high-
throughput parallel VMM and transpose VMM operations. More 
details of the system architecture are provided in Supplementary 
Fig. 1 and Supplementary Note 2.

The mixed-signal interface is controlled by an on-chip 
OpenRISC processor that allows the implementation of differ-
ent computing operations, as shown in Supplementary Fig. 2 and 
Supplementary Note 2. The processor provides fine-grained pro-
grammability, allowing the operation of any set of rows and col-
umns, in either read or write mode and forward or backward 
direction (Supplementary Figs. 5–8 and Supplementary Note 3). 
The design also supports online dictionary learning with higher-
voltage write DACs to program or update the memristor conduc-
tance (Supplementary Figs. 7 and 8).

A 54 × 108 WOx-based memristor crossbar is fabricated on top of 
the CMOS circuits. Figure 1a shows a photograph of the integrated 
chip after packaging, along with the testing set-up. Figure 1b,c are 
top-view images of the chip, showing the memristor array integrated 
on top of the chip surface, at different magnifications. Each row and 
column of the crossbar array is connected to a specific landing pad 
left open during the CMOS fabrication process, and then connected 
to the interface circuitry through internal CMOS wiring (Fig. 1d; 
see also Supplementary Figs. 9 and 10 and Methods for fabrication 
details). Each row or column of the array is connected to two write 
DACs, one read DAC and a 13 bit ADC (Fig. 1e). The memristors can 
be successfully programmed by controlling the number of applied 
write/erase pulses, then read out by the integrated interface cir-
cuitry and controller, even without any current-limiting transistors 
or external current compliance (Supplementary Fig. 11). Figure 1f 
shows the on/off ratio distribution of devices in the integrated array 
after a weight update operation. The relative uniform distribution  

of devices within the array allows the system to implement a num-
ber of computing tasks on chip. We note that device variations can 
still be observed. This effect is exacerbated by the line resistance 
effects (Supplementary Figs. 12 and 13). Further device optimiza-
tions and the use of a monolithic integration technique that reduces 
the line resistance can lead to better array and network performance 
(Supplementary Fig. 14 and Supplementary Note 4).

In the following, we discuss different models and neural network 
structures implemented in the same chip, by reprogramming the 
on-chip processor and the functions of the memristor array and the 
interface circuits.

Training and classification using a single-layer perceptron
A feed-forward single-layer perceptron (SLP) network was first 
implemented to verify the operation of the integrated chip; 5 × 5 
binary patterns were used in the SLP training and testing. The SLP 
has 26 inputs (corresponding to the 25 pixels in the image and a bias 
term) and 5 outputs, with the input and output neurons fully con-
nected with 26 × 5 = 130 synaptic weights, where the neuron with the 
highest output is identified as the winner and used to classify the cor-
responding class, as schematically shown in Fig. 2a (see Methods).

In our implementation, the original binary input patterns are 
converted into input voltage pulses through the integrated proces-
sor and DAC circuitry and are fed to the rows of the memristor 
array. Specifically, when a white pixel is present, a pulse is applied to 
the corresponding row; while black pixels correspond to no pulse. 
The bias term is fixed at a constant value of 1 (treated as a white 
pixel) and is applied as an extra input. All the input pulses have 
the same duration and amplitude in this test, as illustrated in Fig. 
2b. Each synaptic weight wij is implemented with two memristors 
representing a positive weight and a negative weight, Gþ

ij

I
 and G�

ij

I
, 

respectively, using the positive memristor conductance values (see 
equation (10) in Methods).

The integrated chip allows us to perform online learning. 
Specifically, the synaptic weights are updated during the training 
phase using the batch gradient descent rule:

Δwij ¼ η
PN
n¼1

tðnÞj � yðnÞj

 
xðnÞ ð1Þ

where x(n) is the nth training sample of the input dataset, y(n) is the 
network output and t(n) is the corresponding label. η is the learn-
ing rate. The update value Δwij for the ith element in the jth class 
is then implemented in the memristors by applying programming 
pulses through the write DACs with a pulse width proportional to 
the desired weight change (quantized within the range of 0–63 time 
steps corresponding to 6 bit precision).

We trained and tested the SLP with noisy 5 × 5 Greek letter pat-
terns, for five distinct classes: ‘Ω’, ‘M’, ‘Π’, ‘Σ’, ‘Φ’. For each Greek 
letter, we flip one of the 25 pixels of the original image and generate 
25 noisy images. Together with the original image they form a set 
of 26 images for each letter. We randomly select 16 images from the 
set of each class for training and use the other 10 images for test-
ing (Fig. 2c). Examples of the training set and testing set are shown 
in Supplementary Figs. 15 and 16. This approach guarantees that 
the training set and the testing set do not overlap, and therefore 
improves the robustness of our testing results.

Training and testing results from the experimentally imple-
mented SLP are shown in Fig. 2d,e. After five online training epochs 
the SLP can already achieve 100% classification accuracy for both 
the training and testing sets. The average activation of the correct 
neuron during training is also clearly separated from the others, and 
the difference in neuron outputs between the winning neuron and 
the other neurons improves during training, as shown in Fig. 2d, 
verifying that online learning has been reliably implemented in the 
experimental set-up.
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Sparse coding algorithm implementation
The same hardware system was then used to implement a sparse 
coding algorithm (see Methods). Sparse coding aims at represent-
ing the original data with the activity of a small set of neurons, and 
can be traced to models of data representation in the visual cor-
tex32,33. Sparse coding is an efficient method for feature extraction 
and information compression, and allows pattern recognition and 
classification to be performed in the compressed domain34.

Following our previous work implemented at the board level16, 
we mapped the locally competitive algorithm (LCA)35 on our inte-
grated memristor/CMOS chip. In this approach, the membrane 
potential of an output neuron is determined by the input, a leak-
age term and an inhibition term whose strength is proportional 
to the similarity of the neurons’ features; that is, an active neuron 
will try to inhibit neurons having similar features. It can be shown 
mathematically that lateral neuron inhibition can be achieved in the 
memristor crossbar by removing the reconstructed signal from the 
input (see equation (13) in Methods). With this approach, the LCA 
algorithm can be implemented in an iterative process through two 
VMM operations: in the forward direction to obtain neuron acti-
vations and in the backward direction to obtain the reconstructed 
input. The residue term is then obtained by removing the recon-
structed input from the original input, and is then fed to the net-
work. The process is repeated until the network stabilizes. Figure 3a 
illustrates the iterative forward and backward processes employed 
in the LCA implementation.

The bidirectional operation of the memristor array in the inte-
grated memristor/CMOS chip allowed us to experimentally imple-
ment the sparse coding algorithm on chip. Similar to the SLP case, 
we use the crossbar array to perform VMM operations, here in 

both forward and backward directions. Given that the chip offers 
full flexibility to implement different algorithms by re-program-
ming the integrated processor, the LCA algorithm was imple-
mented in the same chip used in the SLP study, through simple 
software changes.

We used 4 × 4 inputs to test the experimental implementation of 
the LCA algorithm. By using linear combinations of horizontal and 
vertical bar patterns, the input dimension is reduced to 7. To satisfy 
the over-completeness requirement of the LCA algorithm, a diction-
ary containing 14 features of horizontal and vertical bar patterns is 
used, as shown in Fig. 3b. This set-up produces a 2 × over-complete 
dictionary35 that enables the network to find a sparse, optimal solu-
tion out of several possible solutions.

The LCA algorithm was mapped to a 16 × 14 subarray in the 
memristor/CMOS chip, using the corresponding interface circuitry 
and the processor that provide the neuron functions. An example of 
the LCA network operation is shown in Fig. 3c,d. The experimen-
tally implemented network correctly reconstructs the input image 
while minimizing the number of activated neurons. For example, it 
identifies the optimized solution with two neurons 6 and 13, instead 
of using three neurons 2, 4 and 6 in this case. The dynamics of the 
LCA network operation can also be correctly captured, as shown 
in Fig. 3e, where the effects of lateral neuron inhibition that lead 
to a more sparse solution than the initial solution can be clearly 
observed (see Methods).

To verify the system’s performance for other input patterns, an 
exhaustive test of all 24 possible patterns consisting of two horizon-
tal bars and one vertical bar was performed using the on-chip mem-
ristor network, resulting in 100% success rate (Fig. 3f), measured by 
the network’s ability to correctly identify the sparse solutions.
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Implementation of a multi-layer neural network
Finally, we demonstrate a bilayer neural network with the same 
integrated chip, using two subarrays in the memristor crossbar 
implementing unsupervised and supervised online learning to 
achieve feature extraction and classification functions, respectively. 
The bilayer network is used to analyse and classify data obtained 
from breast cancer screening based on PCA. Specifically, the first 
layer of the system is a 9 × 2 network that performs PCA of the orig-
inal data, which reduces the nine-dimensional (9D) raw input data 
to a 2D space based on the learned principal components (PCs). 
The second layer is a 3 × 1 SLP layer (with differential weights and 
a bias term), which performs classification using the reduced data 
in the 2D space for the two classes (benign or malignant). The 
schematic and crossbar implementation of the bilayer network are 
shown in Fig. 4a,b.

PCA reduces data dimensionality by projecting data onto lower 
dimensions along the PCs, with the goal of finding the best sum-
mary of the data using a limited number of PCs36. The conventional 
approach to PCA is to solve the eigenvectors of the covariance 
matrix of the input data, which can be computationally expensive 
in hardware. A more hardware-friendly approach is to find the PCs 
through unsupervised, online learning.

Specifically, following our previous study18, Sanger’s rule, also 
known as the generalized Hebbian algorithm, is implemented in 
the integrated chip to obtain the PCs (Supplementary Note 5). The 
desired weight change for the jth PC is determined by

δgij ¼ ηyj xi �
Pj

k¼1
gijyj

 
ð2Þ

In the experiment, the weights of the first and second PCs, gij, are 
mapped onto the memristor conductances through a linear trans-
formation18 (Supplementary Note 5). The network is trained online, 
using a subset of the original database consisting of 100 data points. 
During the training process, the 9D breast cancer data are converted 
into input voltage pulses with pulse widths proportional to the data 
values, within the range of 0–63 time units. The output charge col-
lected at column j then corresponds to the dot product of the input 
vector and the conductance vector stored in column j, projecting 
data from the original 9D space to a 2D output space (when only 
two PCs are used). During training, the weights are then updated 
following equation (2), using programming voltage pulses gener-
ated through the write DACs with pulse widths proportional to δgij.

Initially, the weights of the first and second PCs are random-
ized in the memristor array (Fig. 4c). Projection of the input along 
these vectors leads to severe overlapping of the benign and malig-
nant cases in the 2D space, as shown in Fig. 4d,e. After 30 train-
ing epochs (an epoch is defined as a training cycle through the 100 
training data), the PCs are correctly learned (Fig. 4f) and the 2D 
projected data can be clearly separated into two clusters (Fig. 4g,h). 
Note that the ground truth (benign or malignant) is not used in 
the PCA training or clustering process. It is included in the plots 
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(represented as blue and red colours in Fig. 4g,h) only to highlight 
the effectiveness of the clustering before and after learning the PCs.

The PCA layer separates the original data into clusters, but does 
not classify them. To achieve classification, we implement a second 
layer, an SLP, in the same hardware system. The SLP processes out-
puts from the PCA layer and generates a label (benign or malig-
nant). Given that there are only two classes to distinguish, the SLP is 
trained online using logistic regression. A 3 × 2 subarray is used in 
the second layer to account for the two inputs, the bias term and the 
differential weights (see Methods).

After learning the PCs in the PCA layer, the original 9D data 
are fed through the PCA layer, and the clustered 2D data are used 
as inputs for the SLP layer. The same 100 training data used for the 
PCA layer training are used for the SLP layer training (Fig. 5a) in 
a supervised fashion, using the ground truth (the label associated 
with the original data, Supplementary Note 6). Training is com-
pleted after 30 epochs.

Afterwards, the 500 test data not included in the training set are 
applied to the network, passing first through the PCA layer then 
as 2D data into the SLP layer. After online training of the PCA 
and the SLP layers, the experimentally implemented two-layer 
network can achieve 94% and 94.6% classification accuracy dur-
ing training and testing (Fig. 5b,c). The values are slightly lower 

than those obtained from software implementation (95% during 
training and 96.8% during testing, Fig. 5d,e), due to the non-
ideality in the memristor weight update that results in a decision 
boundary that differs from that obtained from software (which 
assumes ideal linear weight updates) after the online training pro-
cess (Supplementary Figs. 17 and 18). Other statistical parameters, 
including the sensitivity, specificity and accuracy for the experi-
mentally implemented PCA + classifier network, were calculated 
to be 93.1%, 99.0% and 94.6%, respectively, along with excellent 
receiver operating characteristic and F1 scores (Supplementary Fig. 
19 and Supplementary Note 7).

Performance analysis of the integrated memristor chip
An important design goal in this study is to have the complete algo-
rithms run on-chip, without having to access off-chip storage for 
weights and instructions. To achieve this goal, we first program 
all necessary instructions in the algorithm in C code, and compile 
the C code into binary machine code. This process only needs to 
be performed once for each application. Afterwards, the binary 
code is loaded into the static random-access memory on chip by 
a bootloader, and all operations are performed on chip. During 
training and inference, the binary program instructions are exe-
cuted through the OpenRISC processor without the need to access 
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external controllers. The inputs to the memristor array are supplied 
through the DACs following the instructions, and the VMM results 
are read as charge values from the ADCs and processed by the 
OpenRISC processor for batch gradient decent calculations or for 
running other algorithms. The results (for example, batch update 
values) are then sent to the on-chip registers, and the DACs are 
reconfigured for the next operations. After the process is complete, 
the final output can be transferred to a computer and accessed by 
the users. Details of the data path are provided in Supplementary 
Fig. 20 and Supplementary Note 8.

The integrated chip suggests that different computing tasks can 
be efficiently mapped on the memristor-based computing plat-
form by taking advantage of the bidirectional VMM operations in 
the memristor crossbars and the flexibility of the CMOS interface 
and control circuitry. In our prototype, the supporting analogue 
interfaces, as well as digital control and the OpenRISC processor, 
are implemented in 180 nm CMOS technology. The entire mixed-
signal interface with independent ADCs and DACs supporting 
the 54 × 108 crossbar and operating at the maximum frequency of 
148 MHz consumes 64.4 mW, obtained from experimental mea-
surements. This corresponds to an energy consumption of 6.53 nJ 
per inner product or 1.12 pJ per operation for the mixed-signal 
interface, where an operation is defined as the multiplication and 
accumulate (MAC) process of a 4 bit input with a stored analogue 
weight in the memristor array. At the maximum operating fre-
quency of 148 MHz, the OpenRISC core consumes 235.3 mW and 
the system supports 9.87 M VMMs per second, corresponding to a 
throughput of 57.5 GOPS. Along with an average power consump-

tion of 7 mW experimentally measured from the 54 × 108 crossbar, 
this results in a total system power of 306.7 mW and a power effi-
ciency of 187.62 GOPS per W for the experimentally demonstrated 
memristor/CMOS chip based on 180 nm CMOS technology. Simply 
scaling the design to a more advanced process node such as 40 nm 
CMOS technology would reduce the total system power consump-
tion to 42.1 mW, corresponding to a power efficiency of 1.37 TOPS 
per W (Supplementary Fig. 21 and Supplementary Note 9). Further 
optimizations of the system design, for example by replacing the 
generic processor with a custom-designed controller or field-pro-
grammable gate array, and by replacing the fast and high-precision 
13 bit ADC with simpler interface circuits (for example, 8 bit neu-
ron activations may be sufficient for common neural networks) and 
more optimized ADC designs, along with memristor device optimi-
zations that reduce power consumption in the memristor crossbar, 
can further improve the system’s performance and power efficiency 
(see Supplementary Figs. 22–27 and Supplementary Note 10 for 
details about circuit optimizations).

During batch training, the memory needed to store the batch 
information may become a bottleneck as the task becomes complex 
and the pattern size increases. Batch gradient descent has also been 
associated with overfitting due to the low stochasticity of the process. 
For complicated tasks and large datasets, mini-batch training37,38 may 
be an attractive option by splitting the training dataset into small 
batches, with typical batch sizes between 2 and 32. Additionally, 
recently proposed hybrid techniques that utilize CMOS capacitors 
to store the lower-significance weight updates could also provide a 
realistic solution to the batch information storage challenge22.
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To achieve high accuracy with more complex and larger datasets, 
the memristor device properties should be further improved. The 
WOx memristor device can be reliably programmed over 107 times. 
Although this level of endurance can support certain online train-
ing algorithms, longer endurance may be desirable. Additionally, 
the cycle to cycle variation during the 107 programming cycles is 
~3.4–4.2% (Supplementary Fig. 28a) and the device to device vari-
ability is ~4.5% (Supplementary Fig. 28b). The small models we 
implemented in the current study can tolerate these cycle-to-cycle 
and device-to-device variations; however, device nonlinearity and 
variability need to be reduced to implement larger networks39. To 
this end, future device optimizations that can improve device uni-
formity and weight update linearity13,40, along with architecture 
innovations such as hybrid non-volatile memory (NVM)–CMOS 
neural-network implementations22, mixed-precision19, multi-
memristive device architectures21 and other precision extension 
techniques24 can be employed. To scale up the system for larger net-
works, rather than simply increasing the crossbar size, a promising 
approach may be to tile small crossbars together in a modular fash-
ion24,41,42, as schematically shown in Supplementary Figs. 29 and 30. 
In this approach, each tile is a self-contained, integrated memristor–
CMOS unit (macro); these units are then tiled together using digital 
interfaces to construct larger systems5 (Supplementary Note 11).

Conclusions
We have reported the design and fabrication of a fully functional, 
programmable neuromorphic computing chip, in which a passive 

memristor crossbar array is integrated with a complete set of ana-
logue and digital components and an on-chip processor. The inte-
grated chip allows mapping of different neuromorphic and machine 
learning algorithms on chip through simple software changes. 
Three different and commonly used models, perceptron, sparse 
coding and PCA with an integrated classification layer, have been 
demonstrated. A classification accuracy of 100% was achieved for 
5 × 5 noisy Greek letters in the SLP implementation, reliable sparse 
coding analysis was obtained from an exhaustive test set using 
4 × 4 bar patterns, and 94.6% classification rate was experimentally 
obtained from the breast cancer screening dataset using the same 
integrated chip.

The integrated memristor–CMOS systems potentially offer 
efficient hardware solutions for different network sizes and appli-
cations6–10,13,14,16,19,20,22,25,43. An initial application of such systems 
may be edge computing, for example as used in the Internet of 
Things (IoT) to process data near its source, allowing real-time 
data processing with high speed and low energy consumption44,45. 
Continued device, circuit and architecture innovations as discussed 
above, along with algorithm advances such as quantized neural net-
works46,47, can allow the system to be scaled up for more complex 
and more demanding tasks.

Methods
Crossbar array fabrication and integration. The memristor crossbar array used 
in this work was directly fabricated on top of the CMOS circuits. First, bottom 
electrode (BE) patterns with 500 nm width were defined by electron-beam 
lithography; the 80-nm-thick Au BEs were then deposited (with Ni/Cr adhesion 
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layer underneath) by electron-beam evaporation and liftoff processes. Next, 300 nm 
of SiO2 was deposited by plasma-enhanced chemical vapour deposition, followed 
by a reactive-ion etch back process to form a spacer structure along the sidewalls 
of the BEs. The spacer structure allows better step coverage for the WOx switching 
layer and the top electrodes (TEs), and also restricts the active device regions to the 
flat exposed top surface of the BEs, as shown in Fig. 1d. To prevent leakage through 
the switching layer among adjacent devices, the switching layer was only deposited 
at the crosspoint regions through electron-beam lithography defined patterns. The 
switching layer was formed by first depositing 20-nm-thick W by d.c. sputtering 
and liftoff processes in the electron-beam patterned regions, then through rapid 
thermal annealing of the patterned W islands with oxygen gas at 400 °C for 60 s 
to form the WOx switching material. Afterwards, TEs (Pd (40 nm)/Au (90 nm)) 
with 500 nm width were patterned and deposited by electron-beam lithography, 
electron-beam evaporation and liftoff processes. Finally, metallization processes 
were performed by photolithography to connect the crossbar electrodes with 
the CMOS landing pads that are left open during the CMOS circuit fabrication 
process. An in situ etch process was performed to remove the native aluminium 
oxide on the CMOS landing pads, followed by deposition of 800 nm thick Al with 
d.c. sputtering and liftoff processes to ensure step coverage of the deeply recessed 
landing pads.

Experimental set-up for chip measurement. The integrated chip was wire-
bonded onto a pin-grid-array package and mounted on a printed circuit board 
(PCB). The PCB provides the needed power signals and the global system clock 
for the integrated chip. No active circuitry (DACs, ADCs, matrix switches and 
so on) are implemented on the PCB, as these functions are all provided directly 
on chip. A UART-to-serial (UART, universal asynchronous receiver–transmitter) 
board was used to convert the input/ouput data from the chip into serial data and 
communicate with a desktop computer through a USB cable.

On-chip analogue-to-digital and digital-to-analogue interfaces. A charge-
based mixed-signal interface was used to support the VMM and programming 
operations of the integrated crossbar array. We operated the memristor array in 
the charge domain instead of the voltage/current domain to avoid the nonlinear 
voltage-to-current multiplication issue (for example, 2 × voltage does not produce 
2 × current because of the nonlinear current–voltage characteristics in the device). 
Specifically, we applied a discrete-time pulse-train input and measured the 
accumulated charge from each column (row). During VMM operations the row 
(column) DACs applied 6 bit programmable pulses at fixed amplitude (600 mV 
with respect to the virtual ground) to the crossbar. The integrating ADCs provided 
a virtual ground (at 1.2 V) and measured the collected charge over the input period.

A hybrid incremental charge-integrating ADC was used to tackle the challenge 
of digitizing a broad range of column (row) outputs while minimizing the area 
and energy consumption. The required large number of ADCs (162), charge 
domain inputs and large dynamic ranges all present unique design challenges. 
Supplementary Fig. 3 shows the 13 bit ADC design used for this study, which 
balances performance and area consumption. Accurate and linear time-domain 
DACs were implemented with a pulsed, return-to-zero DAC architecture. A simple 
time-domain DAC is inherently nonlinear because of the finite rise and fall time 
of the output waveform (Supplementary Fig. 4). Instead, we applied duty-cycled 
(75%) pulsed inputs where the number of pulses represented the input amplitude. 
The return-to-zero ‘read’ DACs toggled between 1.8 V and 1.2 V (virtual ground), 
creating 600 mV pulses for VMM operations without changing the memristor 
conductance. Two additional ‘write’ DACs were connected for each column and 
row to create 1.8 V amplitude pulses for weight updates during online learning.

Logistic regression. A supervised learning algorithm, logistic regression, was used 
to train the SLP layer of the bilayer network to classify benign and malignant cells.

Logistic regression is commonly used for the classification of two classes. 
Suppose an N training sample dataset x ¼ x 1ð Þ; ¼ ; x Nð Þ� �T

I
 with label 

t ¼ t 1ð Þ; ¼ ; t Nð Þ� �T
I

, where the nth training sample can be written as x(n) and the 
nth label as t nð Þ 2 0; 1f g

I
.

A cross-entropy energy function can be defined as

E wð Þ ¼ �
XN

n¼1

t nð Þln y nð Þ þ 1� t nð Þ
 

ln 1� y nð Þ
 n o

ð3Þ

where y nð Þ ¼ σ z nð Þ� �

I
 and z nð Þ ¼ wTx nð Þ

Iσ(z) is the logistic sigmoid function defined by

σ zð Þ ¼ 1
1þ exp �zð Þ ð4Þ

The likelihood of a training data x(n) belonging to class t(n) = 1 is determined 
by the sigmoid function output y(n), with larger y(n) meaning x(n) is more likely to 
belong to the class.

Taking the gradient of the error function leads to

∇E wð Þ ¼ PN
n¼1

y nð Þ � t nð Þ� 
x nð Þ ð5Þ

To minimize the energy function, the network is trained using batch gradient 
descent defined as48

w ¼ w� η
PN
n¼1

y nð Þ � t nð Þ� 
x nð Þ ð6Þ

Softmax regression. Softmax regression is a generalized logistic regression for 
multi-class classification, usually used when more than two classes need to be 
classified. The activation function is defined as

yðnÞj z nð Þ� 
¼ exp zðnÞj

� 
P

k
exp zðnÞkð Þ ð7Þ

where zðnÞk
I

 is given by z
ðnÞ
k ¼ wT

k x
nð Þ

I
, representing the likelihood of training data x(n) 

belonging to class Ck ðtðnÞ ¼ ð0; ¼ ; 1|{z}
kth

; ¼ ; 0ÞÞ

I
The network ends up with a similar form of gradient as in the logistic 

regression case:

∇wj E w1; ¼ ;wKð Þ ¼ PN
n¼1

yðnÞj � tðnÞj

 
x nð Þ ð8Þ

To minimize the energy function, the network is trained using batch gradient 
descent defined as48

wj ¼ wj � η∇wj E ¼ wj � η
PN
n¼1

yðnÞj � tðnÞj

 
x nð Þ ð9Þ

In general, the weighted sums of the inputs can be anything ranging from −∞ 
to +∞. To bound the neuron output values and perform proper classifications, 
activation functions play a key role. Nonlinear activation functions such as the 
Sigmoid and the Softmax functions are among the most widely used for binary and 
multi-class classification, respectively. In this case, we chose the Softmax function 
for the multi-class classification task, which allows us to compute the probabilities 
for all classes. The Softmax function produces neuron output values in the range 
0–1, where the neuron with the highest output is identified as the winner and used 
to classify the corresponding class.

In the memristor crossbar array, the charge collected at an output neuron j is

Qj ¼
P
i
wijxi ¼ V

P
i
Gijti ¼ V

P
i

Gþ
ij � G�

ij

 
ti ¼ Qþ

j � Q�
j ð10Þ

where xi is the input at row i and is represented by a voltage pulse with amplitude V 
and width ti. The charges are measured at the output columns and digitized by the 
ADCs, then converted to the neuron output yj through the Softmax function:

yj Qj
� 

¼ exp βQjð ÞP
k
exp βQkð Þ ð11Þ

where β is a scaling factor of the ADC output and k represents the output neuron 
index.

Compared with earlier SLP implementations9 that used the Manhattan rule 
and required on average 23 epochs to achieve perfect classification for a similar 
database, the batch gradient descent rule used here not only considers the direction 
of the weight update (which represents the Manhattan rule), but also the value of 
the weight update, so much faster training convergence can be obtained.

LCA. The LCA is a sparse coding algorithm that uses a dictionary of feature 
vectors to encode an input signal with a small number of output coefficients, while 
minimizing the reconstruction error.

The concept of sparse coding is as follows. Given an input signal x and a 
dictionary of features D, sparse coding aims to represent x as a linear combination 
of features from D using a set of sparse coefficients a, with a minimum number 
of features. Mathematically, the objective of sparse coding can be summarized as 
minimizing an energy function containing both the reconstruction error term as 
well as a sparsity penalty term, defined as

min
a

x � DaT
�� ��

2
þλ aj j0

� �
ð12Þ

where |·|2 and |·|0 are the L2- and L0-norm, respectively, and λ is a sparsity parameter 
that determines the relative weights of the reconstruction error (first term) and the 
sparsity penalty (the number of neurons used, second term).

The mathematical form of the LCA can be expressed as follows: x is an 
m-element (m × 1) input vector, D is an m × n matrix, where each column of D 
represents an m-element feature vector (that is, a dictionary element) and a is 
an n-element (1 × n) row vector representing the neuron activity coefficients, 
where the ith element of a corresponds to the activity of the ith neuron. After 
feeding input x to the network and allowing the network to stabilize through 
lateral inhibition, a reconstruction of x can be obtained as DaT, that is, the linear 
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combination of the neuron activities and the corresponding neurons’ feature 
vectors. In a sparse representation, only a few elements in a are non-zero, while the 
other neurons’ activities are suppressed to be precisely zero.

The neuron dynamics during LCA analysis can be summarized by the 
following equation35:

du
dt ¼ 1

τ �uþ xTD� a DTD� Inð Þð Þ ð13aÞ

ai ¼
ui if ui>λ

0 otherwise

�
ð13bÞ

where ui is the membrane potential of neuron i, τ is a time constant and In is the 
n × n identity matrix.

Implementing the inhibition effect DTD can be very computation-intensive. To 
implement the algorithm in memristor hardware, the original equation (13a) can 
be rewritten as

du
dt ¼ 1

τ �uþ x � x̂ð ÞTDþ a
� �

ð14Þ

where x̂ ¼ DaT
I

 is the reconstructed signal. Equation (14) shows that the inhibition 
term between neurons can be interpreted as a neuron removing its feature from 
the input when it becomes active, thus suppressing the activity of other neurons 
having similar features. The matrix–matrix operation DTD in equation (13a) is 
thus reduced to two sequential matrix-vector operations, one used to calculate 
x̂ ¼ DaT
I

 and the other used to calculate the neuron activity from the updated input 
rTD, where r ¼ x � x̂

I
 is the residue term. This approach allows us to implement 

the LCA in memristor crossbars without physical inhibitory synaptic connections 
between the neurons.

The dynamics of the LCA network operation are correctly captured by the 
memristor chip, as shown in Fig. 3e. In this example, all neurons are charging up in 
the first four iterations. At the fifth iteration, neuron 13 first crosses the threshold, 
as it consists of two horizontal bars which result in a larger output value in the 
membrane potential update. As a result, the lateral inhibition effect in the system 
suppresses the membrane potentials of other neurons (2 and 4) sharing part of 
the features of neuron 13, even though they also represent features of the input. 
Meanwhile neuron 6, which represents the vertical bar feature, continues to charge 
up. At iteration 11, the membrane potential of neuron 6 crosses the threshold, 
and all other neurons’ membrane potentials are suppressed below the threshold, 
leading to the optimal solution. The neurons’ membrane potentials continue to 
evolve, but those of neurons 6 and 13 remain above the threshold and those of 
other neurons continue to decrease due to the inhibition term and the leaky term 
in the membrane potential equation. The solution from the network was read out 
after 30 iterations.

Breast cancer dataset and classification. A standard breast cancer dataset from 
the University of Wisconsin Hospital49 was used as the input for the PCA network, 
which is available through the University of Californian, Irvine Machine Learning 
Repository50.

The dataset consists of breast cell mass properties measured in nine categories; 
each property is scored from 1 to 10. Each input to the memristor network is thus 
a 9D vector consisting of scores from the nine measurements. The bilayer network 
was trained using 100 training data (containing 50 benign and 50 malignant 
cases) from the dataset, and tested with 500 data (containing 312 benign and 188 
malignant cases) not in the training set.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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