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Statistical Analysis of ENOB and Yield in Binary

Weighted ADCs and DACS With Random
Element Mismatch

Jeffrey A. Fredenburg and Michael P. Flynn

Abstract—Mismatch motivates many of the design deci-
sions for binary weighted, ratiometric converters, such as
successive approximation (SAR) analog-to-digital converters
(ADC), but the statistical relationship between mismatch and
signal-to-noise-plus-distortion ratio (SNDR) has not been pre-
cisely quantified. In this paper, we analyze the effects of capacitor
mismatch in a binary weighted, charge redistribution SAR ADC
and derive a new analytic expression relating capacitor mismatch
and the effective-number-of-bits (ENOB). We then explore the
statistics of this new expression and develop a model that accu-
rately predicts yield in terms of ENOB. Finally, the major results
of this paper are generalized into a simple and compact design
equation that relates resolution, mismatch, and ENOB to yield
for all binary weighted, ratiometric converters. The expressions
derived in this paper offer practical insight into the relationship
between mismatch and performance for all binary, weighted ratio-
metric converters with these results validated through numerical
simulations.

Index Terms—Analog-digital conversion, analog integrated cir-
cuits, mismatch, successive approximation registers, yield.

I. INTRODUCTION

AR ADCs OFFER an attractive solution in low power

applications. Due to the inherent energy efficiency of
charge redistribution DACs and the leveraged benefits of
scaling [1], SAR ADCs can provide power efficient analog to
digital conversion in systems that require moderate resolution
and speed. However, specific applications have specific needs,
and to ensure those needs are met, it is important for designers
to have complete understanding of the design tradeoffs in the
key building blocks of SAR ADC:s, such as the capacitor DAC,
the comparator, and the successive approximation registers.

It is well established that mismatch degrades the overall per-
formance of ADCs, and various techniques have been proposed
to overcome this degradation [2]—[8]. However, a precise for-
mulation of the relationship between mismatch, the effective
number of bits (ENOB), and yield is still lacking. In practice,
an ADC designer may need to target a particular ENOB spec-
ification, but when estimating the yield, only indirect metrics
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such as integral nonlinearity (INL) or differential nonlinearity
(DNL) are available. Although ENOB, INL, and DNL are im-
portant indicators of ADC performance, ENOB is a better in-
dicator of the overall system level performance, and with the
yield expressions derived in this paper, ADC designers can more
casily target system level performance objectives.

The use of INL as a yield metric for data converters is preva-
lent in literature, but has limited utility in system design. Al-
though the bulk of the analytic work has focused on developing
INL yield models for current-steering DACs [9]-[13] in the
presence of transistor drain current mismatch [14], the major
results of these works are also generally applicable to ADCs.
According to [13], the analytical development of INL as a yield
metric begins with [9], where the maximum deviation of the
INL is introduced as a measure for distinguishing between good
and bad current-steering DACs. Later in [10]-[13], we see a
progression of refinements aimed towards improving the sta-
tistical accuracy of INL based yield estimates. However, none
of these works [9]-[13] offer a detailed comparison between
INL yield measurements and other performance metrics such
as signal-to-noise-plus-distortion ratio (SNDR), and it is unclear
how to precisely interpret INL based yield estimates when tar-
geting a specific ENOB yield for ADCs and DACs.

Examples of analysis relating INL/DNL to ENOB can be
found in [16]-[18], [24], but these works do not contain a de-
tailed statistical treatment relating ENOB and yield. In [16],
DNL is related to signal-to-noise ratio (SNR) by considering
DNL errors as an additive noise in flash ADCs. In [17], SNDR
is related to INL errors as a function of the input signal proba-
bility density function (PDF). In [18], ENOB is related to INL
through a harmonic analysis for thermometer-coded structures,
and in [24] an approximate relationship between ENOB and
INL is given for resistor strings based on analysis in [15]. Al-
though these works provide a convenient sketch relating ENOB
and DNL/INL, it is unclear how to extract accurate ENOB yield
information.

In this paper, we develop an alternative statistical model using
ENOB as a yield metric. First, we examine the effects of mis-
match in a binary weighted, charge redistribution SAR ADC.
We then derive an exact algebraic formulation relating capac-
itor mismatch to the average noise power of the ADC output,
and from this algebraic formulation, we derive ENOB as a func-
tion of capacitor mismatch. Next, we explore the statistics of
this ENOB expression and develop a statistical expression that
predicts yield in terms of ENOB and mismatch. Finally, we gen-
eralize the results of this work by presenting a compact design
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Fig. 1. Transfer function and residual noise voltage of a capacitor DAC with

mismatch (solid) and without mismatch (dashed). Without mismatch, the code
transitions and DAC outputs occur in regular LSB intervals.

equation, which accurately relates resolution, mismatch, and
ENOB to yield for all binary weighted, ratiometric converters.
The design equation offered is accurate to within +0.17 bits for
yield values between 0.5% and 99.5% and is consistent with
standard test methodology.

Section II analyzes the effects of mismatch and derives an
expression for ENOB as a function of capacitor mismatch.
Section III explores the statistics of this ENOB expression,
and Section IV formulates an expression for yield. Section V
develops a compact design equation for yield, ENOB and
mismatch, which generalizes the results of this work.

II. ANALYTICAL ENOB DERIVATION

In this section, we derive an analytic expression for the ENOB
of a binary weighted SAR ADC in terms of capacitor mismatch.
Although we derive this expression from the perspective of a ca-
pacitor DAC, our results are equally valid form the perspective
of the ADC. We begin this derivation by relating the INL errors
of a DAC to its average noise power. Next, we formulate an
expression for the INL in terms of capacitor mismatch parame-
ters, and use this relationship to express the mismatch induced
noise power as a function of the capacitor mismatch. Finally, we
translate the mismatch induced noise expression into an analyt-
ical expression for ENOB which supports differential sinusoidal
signals and is consistent with standard ADC test methodology.

A. Mismatch Induced Noise Power

The relationship between the mismatch induced noise power
and INL can be derived in a manner similar to the calculation of
ideal quantization noise power. By including INL errors into this
calculation, we can capture the noise power contributed from
INL errors.! Fig. 1 shows the transfer function of a DAC and its
corresponding noise voltage with and without INL errors. For
an ideal single-ended DAC without mismatch, the established
L.SB? /12 quantization noise expression represents the mean-

1A related result in [16] expresses the average noise power of a flash ADC to
its DNL errors.
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squared value of the output noise voltage [18]. Assuming the
DAC output codes are uniformly distributed, we can calculate
this quantity as shown in (1) and (2)—where N is the DAC
resolution in bits, A is the LSB, « is the output noise voltage,
and uy is the mean output noise voltage.

1 A A2

‘/1120153 = N A /(U — 'U'())Zdu = 1—9 (1)
=0 0 =

Uup = 21\’A Z / udu— )

100

We incorporate mismatch into this expression by modifying
the limits of integration in (1) to include the INL errors of the
DAC. Since the i-th code transition voltage of a mismatched
DAC is offset from the ideal transition voltage by the INL error
of that code, we offset the integration limits in (1) by the INL
error as shown in (3)—where ®; is the INL error of the i-th code
expressed in LSB.

oN _ \(1+‘I’7+1)

AN?
2 _ 2 . .
‘/lebe - 2AA / u = 5) du. (3)
=0 A'(I?i

Evaluating the integral in (3) and simplifying the resulting
expression, we obtain an expression for the noise power in terms
of the INL, which is given by (4).2 A more intuitive formulation
of (4) is also presented in (5).

2 A? A2 < 2
an(use - 2\7 Z (I (4)
i=0
A?
Vi o= e + A? Mean (®?). 5)

In the limit of a large /N, the contribution from the mismatch
induced noise power can be approximated as the variance of the
INL as shown in (6).3

A2

V2= TR A? Var (INL).

noise

(6)

Expressions (4)—(6) describe the average noise power of a
single-ended DAC as the sum of the ideal quantization noise and
the mean square of the INL errors. These results are generally
applicable to all ADCs and DACs with both fixed quantization
levels and uniformly distributed DAC outputs and indicate that
nonlinearities in the quantization levels manifest as an additive
noise. This conclusion is also suggested in [16] for DNL errors.

B. Analytic Formulation of DNL and INL

We continue by formulating an expression for the noise power
contributed by the INL errors as a function of capacitor mis-
match. To this end, we first introduce a capacitor mismatch
model and then derive expressions for DAC DNL errors in terms
of this model. Finally, we convert these DNL expressions into
INL expressions and solve for the mean squared INL in terms
of the capacitor mismatch parameters.

2The DC power contributed by the INL errors is not removed from (4).

3A similar result to (6) is derived in [17] using a probabilistic approach.
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We model the mismatch of capacitors within the array as an
additive random error—i.e., C' = Chom + AC, where Chom
is the nominal design capacitance and AC' is a normally dis-
tributed random error with zero mean with o2 variance. Fur-
thermore, we define a mismatch parameter - to describe the
fractional error of each binary weighted capacitor group from
its ideal value. Assuming that the capacitors are carefully ar-
ranged, we neglect pathological errors and effects from spatial
gradients.4

The mismatch model is provided in (7)—where 2% is the total
number of capacitors in the array, C,, is the average unit ca-
pacitance of the array, C; is the capacitance of the i-th binary
weighted capacitor group, and ~y; is the associated fractional
mismatch of the i-th group. In addition, we let « = N represent
the MSB, ¢« = 1 the LSB, and « = 0 the termination capacitor.
Note that the effective unit capacitance, C,,, is distinct from the
nominal design capacitance, Com .

Ci - 21.‘1014(1 + PYL)
1
C’u, = ﬁ Z(Cn()ln + ACJ) (7)
j=1
Since the sum of the binary weighted capacitors, defined in
(7) as C;, must equal the total capacitance of the array, the
weighted sum of the fractional mismatch parameters -v; must
sum to zero. This condition is enforced by (8).5

N
Yo+ 27y =0 (8)
i=1

Using the capacitor mismatch model defined in (7) and (8),
we now relate the DNL errors of the DAC to the fractional
mismatch parameter ;. The DNL error of a DAC can be ex-
pressed by (9)—where AVpac is the difference between suc-
cessive DAC output voltages [19].

AVpac — LSB

DNL =
LSD

©)

Furthermore, we can express the DAC output voltages
in terms of the binary weighted capacitors as shown in
(10)—where N is the resolution in bits, A is the LSB, C;
is the i-th binary weighted capacitor group, and h; € {01}
represents the digital bits in the DAC code.

N b,

—A. 1
c. (10)

7 —
DAC —
=1

Substituting the expression for C; from (7) into (10), we relate
the DAC output voltage to the fractional mismatch parameter -y,
as in (11).

N

Dac =Y b2 (1 4+ 4:)A. (11)
=1

4An analysis relating INL errors to spatial gradients is found in [20].

5Although based on the physical construction of the capacitor array, the con-
straint on -y given by (8) also ensures that gain errors in the transfer curve are
not counted as distortion since (8) imposes a unity gain for the DAC transfer
curve.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 59, NO. 7, JULY 2012

Using the DAC output voltage expression in (11) and the def-
inition for DNL given in (9), we calculate the DNL errors for
each of the 2"V DAC codes. For an N bit, single-ended, binary
weighted capacitor DAC, however, the DNL errors are uniquely
determined by IV distinct DNL values, and these NV values rep-
resent the DNL error at the major code transitions—specifically,
codes 20! wherei € {1....,N}.

Intuitively, we can understand why the DAC has only N
unique DNL by examining the odd numbered codes. Since all
the odd numbered codes have a binary representation ending in
one, the difference in the DAC output voltage between these
codes and one code less is determined solely by the DAC LSB
capacitor. Therefore, the DNL error for every odd code is the
same and is equal to the DNL error for code 2°, which is an odd
code. Using similar examples, we can show through induction
that only V unique values are needed to describe the entire DNL
of the DAC and these unique values are equal to the DNL at the
major code transitions.

We now calculate the DNL errors at the major code transi-
tions by substituting (11) into (9)—where AVpag from (9) is
the difference in the DAC output voltages between codes 2¢ !
and 2° ! — 1. An expression for the N unique DNL values is
provided in (12)—where d; represents the DNL error at code
271, andi € {1,...,N}.

i—1
di =21y =) 2y (12)
i=1

The distribution of the DNL values given in (12) across each
of the DAC codes can be described by the recursively ordered
set shown in (13)—where Dy is ordered set of DNL values,
and dp, as described by (12), represents the DNL at the most
significant code in the level of hierarchy. The arrangement of
DNL values given by (13) describes a sequence in which the N
unique DNL values are distributed across the DAC codes in an
“z modulo 2V =1 manner.

DN = {Dj\r,l (I’,N Dj\r,l}. (13)

As an example of how (13) describes the DNL distribution,
we consider a 3 bit DAC. For N = 3, the arrangement of the
DNL errors for this DAC is shown in (14)—where d; is again
described by (12).

D3 = {(111 dz d]_ d3 dl dg dl}- (14)

With both the DNL values and their arrangement calculated,
we now relate the INL to the DNL and work towards expressing
the mean-squared INL in terms of the mismatch parameter
~;. The relationship between INL and DNL is shown in (15)
[19]—where ®; is the INL error at code ¢, and 6; is the DNL
error at code j. Furthermore, §; assumes one of the values
described by (12) in an order determined by (13).

d, = 2 (5,
J=1

Substituting the DNL expression from (12) into (15) and
simplifying the resulting summation by exploiting the inherent
folding symmetry of (13), we derive the mean-squared INL in

(15)
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terms of the mismatch parameter ;. The simplified result is
shown in (16).

N
1, 1 .
Mean(®%) = 273 + 7> (2 1) (16)
i=1

Substituting this expression for the INL noise power from
(16) into the noise power expression from (5), we obtain an
explicit expression for the average noise power of an N bit
single-ended DAC with capacitor mismatch, which is shown in
(17)—where A is the LSB, and ~; is the fractional mismatch of
the ¢-th capacitor group as defined in (7). Furthermore, we let
1 = N represent the MSB, 7 = 1 the LSB, and ¢ = 0 the termi-
nation capacitor.

. AZ O A?
nzoise =0+ —

12 4 a7

N
. i 2
B3 () ]

The expression given in (17) describes the average noise
power of a binary weighted DAC as the sum of the ideal
quantization noise and a linear combination of the -; mismatch
parameters squared. Similar to INL and DNL, the mismatch
parameter -; manifests as additive noise.

C. Differential Conversion

Since most high-performance SAR ADCs process differen-
tial signals, we now convert the noise power expression given
by (17) from a single-ended result into a differential result. If
we imagine constructing an NV bit, differential DAC using two
N — 1 bit, single-ended DACs, each with identical mismatch
and opposite polarity,® the average noise power of this com-
posite differential DAC is the average of the two single-ended
DAC noise powers. Using the results from (17) to describe the
noise powers of the two N — 1 bit single-ended DACs and av-
eraging, we obtain the noise power of an N bit, differential, bi-
nary weighted DAC as given in (18)—where A now describes
the differential LSB, «; is the composite fractional mismatch of
the i-th capacitor groups, and +; ,, and -; ,, are the individual
mismatch parameters from the positive and negative arrays.

A2 A2 N,
V1120ise = E + Z 'Vg + Z (2 1,-},1.)
=1
1 .
Yi =§(Vi,p+%m) (S {07"'7N_ 1} (18)

Equation (18) presents an exact algebraic solution for the
average noise power of a binary weighted V bit, differential
DAC with uniformly distributed INL errors. Furthermore, since
the differential DAC output voltages are perfectly symmetrical
about the origin, the noise power given by (18) is zero mean.
Additionally, the constraint on «y; given by (8) properly accounts
for gain errors throughout the development of (18).

D. Analytic Formulation of ENOB

We now formulate an expression for ENOB in terms of the
mismatch parameter ;. For a perfectly matched DAC, only the

6This DAC structure represents a generic sign/magnitude encoded structure
utilizing a fixed common-mode output.
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quantization errors contribute noise and the average noise power
is LSB2/12, as shown in (1). If we define an effective LSB size,
which generates an average noise power equivalent to the noise
power of a mismatched DAC, we can explicitly relate ENOB to
the average noise power of the mismatched DAC as is done in
(19)—where Vg is the differential full scale range of the DAC
output voltage, and A.g is the effective LSB size.

‘/72 _ l\zﬁ'
noise 12

Aor = Vps - 2 ENOB,

19)

Substituting the differential noise expression from (18) into
(19), we can relate the ENOB of the DAC to the mismatch pa-
rameters ;. Solving this resulting expression for ENOB, we ob-
tain (20).

N—-1
ENOB =N —log, [1430 +3 > (2" ')

i=1

i€f{0,...,N—1}.

2

1
Y¥i = =Vip + Viom) (20)

2

Equation (20) offers an exact analytic expression relating

the ENOB of an N bit, differential, binary weighted capacitor

DAC to capacitor mismatch for uniformly distributed signals.

Although we derived (20) from the perspective of a SAR ADC,

the result provided in (20) is applicable to all binary weighted
ratiometric converters.’

E. Correction for Sinusoidal Distributions

The ENOB expression given in (20) assumes that the
DAC codes are uniformly distributed. In practice, however, the
ENOB of an ADC is typically measured using a sinusoidal input
signal, not a uniformly distributed signal. With a full-scale, uni-
formly distributed signal, all of the INL errors across the entire
code range each contribute equally to noise. On the other hand,
since sinusoidal signals tend to dwell more near their peaks
than their mean, the INL errors at the outer codes contribute a
larger fraction of the noise than the INL errors near the center
codes. Therefore, the noise power contributed by INL errors
depends on the probability distribution of the signal.8

To reconcile the ENOB expression in (20) with this preferred
sinusoidal testing method, we introduce the scalar correction
factor, «, to convert the ENOB expression given by (20) into an
equivalent expression describing the ENOB of a sinusoidally
distributed input signal. The modified ENOB expression is
given in (21)—where ~y; represents the composite fractional
mismatch parameter of the binary weighted capacitor groups
as defined in (18) and (7), and « is approximated as the ratio

"For binary weighted ratiometric converter without an explicit termination
element, -yq is still defined as in (8), but should instead be interpreted as either
the mean of the single-ended INL errors or a description of the INL induced
gain error of the converter transfer function.

8If the INL error were constant across the code range, the INL induced noise
power would be independent of the signal distribution. This is why the quanti-
zation noise does not need to be scaled. By definition, however, the INL errors
across an extended code range must sum to zero and therefore cannot remain
constant across the codes.
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between the INL noise contributions from a sinusoidal distribu-
tion and a uniform distribution.? A derivation for the estimated
value of @ used in (21) is offered in Appendix .

N-1
ENOB =N —logy |14 307 +30 > (2" ')

=1

2

34-7) o 5197,

™

o= 21

Equation (21) provides an accurate estimate for the ENOB
of N bit, differential, binary weighted ratiometric converters,
which is consistent with the standard sinusoidal testing of the
ADCs and DACs. Had we not introduced the correction factor
«, the ENOB expression would overestimate the mismatch in-
duced noise power by 18%.19 Using (21), we can now accu-
rately estimate the ENOB of a sinusoidal distribution over a
wide range of «y; values and compare results with standard ADC
and DAC test measurements.

III. STATISTICAL ENOB DERIVATION

Section II provides an analytic expression relating ENOB and
mismatch (21), and in this section, we examine the statistics of
this ENOB expression. First, we derive the probability density
functions (PDF) for the single-ended mismatch parameters ; ,,
and +; ,,,. Next, we use these PDFs for v; , and ; ,,, to derive
the PDF for the differential, composite parameter y;, and subse-
quently, the PDF for the square of ;. Finally, we combine these
results with the ENOB expression given by (21) and obtain a
statistical expression for ENOB. Finally, we compare this ex-
pression to results from numerical ADC simulations.

A. PDF for the Single-Ended Mismatch Parameter -y

In the capacitor mismatch model presented in (7), each ca-
pacitor is modeled as C' = Clpom + AC, where Clopy, 1s the
nominal design capacitance and AC is a normally distributed
error with zero mean with o2 variance. The PDF for C is shown
in (22)—where the PDF is expressed using the notation fc(c¢).

_ l - (C - 0110111)2
- V270, exp 202 |

fo(c) (22)

Furthermore, both the binary weighted capacitor groups
and the total array capacitance can be represented as sums
of the individual capacitors. Since the sum of independent
normal random variables is itself normal with a mean and
variance equal to the sum of the constituent means and vari-
ances, we obtain the marginal PDFs for the binary weighted
capacitors directly from (22) as given in (23)—where N, is
the single-ended resolution, and X; is the capacitance of the
i-th binary weighted capacitor group in one of the single-ended
arrays. To avoid parametric equations, we will omit the PDF of
the termination capacitor and note that the distribution for the

9Alternatively, the ENOB of sinusoidally distributed DAC codes can be de-
rived by replacing the “averaging” in (3) with the probability mass function
(PMF) of a sinusoidal distribution, but it is unclear whether a tractable ENOB
expression can be obtained due to the complexity of the sinusoidal PMF.

10Since « linearly scales only the mismatch induced noise power, the 18%
overestimation can be approximated by 1 — ar.
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termination capacitor, X, follows the same distribution as the
LSB capacitor, X;.

1 —(z - Nz:)z]
fx.(x) = exy
x () V2o, p[ 201-2
;=2 Cm i€ {l,...,Ns}

o2 =207 152, (23)

Similarly, we derive the PDF for the total single-ended array
capacitance from (22) as shown in (24)—where NV is the single-
ended resolution, and W is the total capacitance for one of the
single-ended arrays.

1 —(w — /L\V)2:|
fw(w) = ex —
w( ) /_27Tffw p [ 20‘%
w = 2I\chnom

2 —ghNss2,

W C

a (24)

Using the definition of y; from the mismatch model given in
(7), we next reformulate ~; in terms of the new variables X;
and W as shown in (25). For convenience, we will denote the
single-ended fractional mismatch parameter with ;. When we
derive the composite mismatch parameter, we will clarify the
notation with «y; ,, and ; ,,,.

X
w

As shown in (25), the PDF for ~; is determined by ratio of
two dependent normal variables, X; and W, which results in a
prohibitively complicated expression for the PDF.!! In order to
simplify this PDF into a form amenable to further analysis, we
will therefore expand (25) and approximate the capacitance of
the array, W, as a constant in the denominator. The expansion
of (25) is given by (26) with W approximated as 2¥*C,, in the
denominator!2—where C,, is the mean capacitance of the array
as defined in (7).

vy =2V (25)

2}\75—‘,—1*'[XI_/ - W
Vi = T awNa~
¢ 9N s(/"“

Using the PDFs for X; and W from (23) and (24), we now
derive an approximation of the marginal PDF for y; through the
expansion given by (26). The simplified PDF for ~; is provided
in (27)—note that the correlation between X; and W in the nu-
merator has not been neglected.

(26)

. L1 -2
frin) = Z=exp [202]

2 ~ufol—i  o—Ns O
“ o9 -9 -
o2 1 [Om

2
] ie{l,....Ns}. (27

We now calculate the PDF for the composite mismatch factor.
Using (27) to describe the distributions for +y; , and y; ,,,, we ob-
tain the PDF for composite mismatch factor using the relation-
ship for the mismatch factors given by (20), which states that the

1 An exact formulation of this PDF is derived in [15] to analyze nonlinearities
in resistor strings.

12Approximating W as 2¥°Cu follows from the weak law of large numbers
and is equivalent to assuming that 0. /C,om is well approximated by o./C.,
when the number of capacitors is large.
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composite mismatch factor is the average of the single-ended
mismatch factors. The PDF for the composite mismatch factor
is provided in (28)—where IV is the differential resolution and
is related to single-ended resolution,!3 Ns, by N = Ns + 1.

R

1 -2
)= e 7]

2 nfgi 9N | e

2
} ie{l,...,N1}. (28)

Equation (28) provides an analytic expression for the PDF of
the composite mismatch parameter y; of an /N bit differential
DAC—where =y follows the same distribution as ~y; .

B. Statistical ENOB Expression

Since the ENOB expression in (21) depends on a linear com-
bination of 42, we now derive the PDF for the square of the
composite mismatch factor from the PDF of the composite mis-
match factor. Letting 7; = /3;7—where 3; represents the scalar
coefficients from the ENOB expression given by (21), the PDF
of 1, follows a Chi-Squared distribution [21]. Using the PDF
described from (28) and replacing the scalars 3; with the ap-
propriate values from (21), we calculate the distribution for #;,
which is shown in (29)!4—where the distributions for 7 is de-
scribed by the distribution for ;.

o 1 ~1/2 {_”/]
. = 7 ex —
fH| (77) \/%O’i ] p 20_12
94—7) . o i o 17
afgw[ztzzlﬁ*] e | jef1,....N—1}. 29)
47T Onom

Substituting #; into the ENOB expression (21), we express
the ENOB in terms of 7; as shown in (30)—where the distribu-
tions for 7); are described in (29).

ENOB = N — log, (30)

N-1
1+ Z 7]7;‘| .

=0

Equation (30) provides an analytic model describing the sta-
tistics for the ENOB of an N bit, binary weighted, differential
SAR ADC with a normally distributed capacitor mismatch. Fur-
thermore, this model includes a sinusoidal correction factor, so
this statistical model is valid for sinusoidally distributed signals
and is thus compatible with standard ADC test methods.

C. Expected Value and Variance

We verify the validity of (30) by comparing analytical expres-
sions for the expected value and variance of ENOB to numer-
ical simulations of randomly generated SAR ADCs. Because the
ENOB expression in (30) contains a logarithmic term, we will
estimate the expected value and variance using a Taylor series
expansion.

13This DAC structure represents the generic sign/magnitude encoded struc-
ture described in II-C which utilizes a fixed common-mode output.

I4This PDF is an approximation for the marginal PDF for 7.
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Fig. 2. Comparison between simulated and calculated expected values (32) for
ENOB across various resolutions. The numerical simulation results are obtained
using a 1024 point FFT of 300,000 randomly mismatched ADCs at each reso-
lution and each standard deviation of capacitor mismatch.

Letting X represent the sum of 7, in (30), the Taylor series
expansion for the ENOB centered at E[X] is shown in (31).

=%} _1\k _ k
ENOB = N —log, (1+E[X])- > 211?4 ()l(‘l' 5[[?()(]]) '

k=1
3D

Taking the expected value of (31) and dropping higher order
terms, we obtain the approximation for the expected ENOB
shown in (32).

Var[X]
2In4 (1 + E[X])*

E[ENOB] = N—log, (1 + E[X])+ (32)

Due to the complexity of including correlations between each
7; in later analysis, we will neglect all correlations.!5 Therefore,
treating the 7; from (30) as independent variables, we can ap-
proximate the expected value and variance of X as the sum of
the expected values and variances of 7;. Figs. 2 and 3 offer a
comparison between the calculated and simulated values for the
expected ENOB of a SAR ADC. As shown in Fig. 2, the calcu-
lated ENOB values track the simulated values reasonably well,
and in Fig. 3, we see that the analytic expected value is within
1.0% of the simulated value over a wide range of resolution and
mismatch.!16

Next, we obtain an expression for the ENOB variance. Taking
the variance of (31) and dropping higher order terms, we derive
(33).

Var[X]

Var[ENOB] = ma(lt E[X])}Q

(33)

I5A comparison between the first four moments of the ENOB expression
given in (30) and the moments calculated from simulation data showed rea-
sonable similarity, which included correlations, and the moments derived from
(30) with #; treated as independent random variables.

161n Fig. 3, however, the error in the expected ENOB is non-monotonic with
respect to resolution, we attribute this to the fixed 1024 point FFTs used to gen-
erate the simulation data. With a fixed 1024 FFT, only a subset of the output
codes is measured for resolutions beyond 11 bits.
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Fig. 3. Comparison between simulated and calculated expected values (32) for
ENOB across various resolutions expressed as percent error. The analytic ex-
pected ENOB values are within +1.0% of simulated values.
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Fig. 4. Comparison between the simulated and calculated ENOB variances
(33) across various resolutions. The numerical simulation results are obtained
using a 1024 point FFT of 300,000 randomly mismatched ADCs at each reso-
lution and each standard deviation of capacitor mismatch.

Similar to the expected value calculation, we treat the 7; from
(30) as independent variables and approximate the variance of
X as the sum of the 7; variances. Fig. 4 compares the calculated
and simulated values for the ENOB variance.

As shown in Fig. 4, the calculated variances compress at
higher resolutions. This compression indicates a nonlinear rela-
tionship between the calculated and simulated variances. Since
the inclusion of higher order terms up to the fourth moment of
X in the Taylor series expansion did not reduce this error, we
attribute the causes of this discrepancy to the scalar correction
factor, «, and the assumption that the 7; are independent. While
the correction factor v correctly scales the expected ENOB to
approximate a sinusoidal distribution, & does not properly scale
the higher moments. Furthermore, the #; are not independent
since the «; mismatch parameters are correlated, which is evi-
denced by (8). Nevertheless, the magnitude of the error between
the calculated and simulated variances is small compared to the
resolution of the ADC.
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IV. YIELD ANALYSIS

We complete the statistical analysis of ENOB with an exami-
nation of the ENOB yield for an V bit, binary weighted, differ-
ential SAR ADC. Using the ENOB expression given in (30), we
can express the probability of achieving some minimal ENOB
in terms of the probabilities for 7; as shown in (34)—where
ENOByn is the minimal desired ENOB, and N is the ADC
resolution in bits.

P(ENOB > ENOByx) = P(X < 4V E¥OBumw _ )

N-1
X = Z T

i=0

(34

A. Full Yield Approximation

We next derive an approximate ENOB yield expression in
terms of the cumulative distribution function (CDF) for X from
(34). The details of this derivation are provided in Appendix II.

When N is even number of bits, the CDF of X can be approx-
imated as in (35)—where Fx(x) denotes the CDF of X, g2;_2
is the ¢-th even ¢ from (29) including o, o9;_1 is i-th odd &
from (29), and on_; denotes the value in the sequence.

el
L\,| |

r

Fx(z) = / /ZB e Mty - dfypdt

0 0 0

N/2 A
By = [\ — 5
=) Ul </\j - S)
1= s A
1 c0s? 6; 29,
P voz qmz (35)
TO2 2021 205 5 205 4

When N is odd number of bits, the CDF of X can be approxi-
mated as in (36)—where, again, where Fx(x) denotes the CDF
of X, 09;_» is the ¢-th even ¢ from (29) including o, o2;_1 is
¢t-th odd o from (29), and o _1 denotes the last value from (29).

2 /2
Fx(e) = / / / > Cie by diyadt
o =1
N/2
B, = 911 ( )
-: s— A
Ai = ; )‘i — COS; 91', ‘Sill; 61'
TO2;-202;—1 205, 4 202, |
2t 2
C; =DB;sing wi = A;sing + 602 @ 36)
N-1 20%_4

Using the ENOB relationship given by (34) along with the
CDFs provided by (35) and (36), we can now calculate the
ENOB yield for an N bit, binary weighted, differential SAR
ADC, but due to the complexity of these equations, however,
we provide a more convenient approximation Section V.
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Fig. 5. Comparison between the simulated and analytic ENOB yields with a
standard deviation of 1.0% capacitor mismatch.
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Fig. 6. Comparison between the simulated and analytic ENOB yields with a
standard deviation of 10% capacitor mismatch.

B. Comparison With Simulation Results

We now compare the ENOB yields predicted by the ana-
lytic expression for the CDF of X provided in (35) and (36)
to simulated ENOB values. The simulated ENOB yield values
are obtained using a 1024 point FFT with a sample of 300,000
randomly mismatched SAR ADCs generated at each resolution
and each standard deviation of mismatch. Furthermore, the yield
values are extracted from histograms of simulated ENOB values
over uniformly distributed bins.

In Figs. 5 and 6, we compare the analytic and simulated
ENOB yield curves for capacitor mismatch standard deviations
of 1% and 10%. At 1% mismatch, Fig. 5, we see excellent
agreement between the analytic and simulated yield curves, but
at 10% mismatch, Fig. 6, we notice some difference between
the analytical and simulated yield curves. Although the 8-10
bits yield curves from Fig. 6 match well, the 11-14 bit curves
display a larger divergence at lower yield values.

Figs. 7 and 8 offer a more detailed comparison between the
analytic and simulated yield curves provided in Figs. 5 and 6.
As shown in Fig. 7, the error between the simulated and analytic
ENOB values at 1% mismatch is within 0.08 bits for 8—14 bits
of resolution across the range of yields between 0.5%-99.5%. In
Fig. 8, the error in the ENOB at 10% mismatch is within +0.17
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Fig. 7. Error between the simulated and analytical ENOB values as a function
of the yield for a 1% standard deviation of capacitor mismatch. The absolute
error in the ENOB is within £0.08 bits over the range of yields from 0.5% to
99.5%.
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Fig. 8. Error between the simulated and analytical ENOB values as a function
of the yield for a 10% standard deviation of capacitor mismatch. The absolute

error in the ENOB is within £0.17 bits over the range of yields from 0.5% to
99.5%.

bits across the range of yields between 0.5%—99.5%. Therefore,
ataparticular yield value, we see an error in the predicted ENOB
less than +0.08 bits at 1% mismatch and less than +0.17 bits at
10% mismatch.

In Figs. 7 and 8, we see that the largest errors in the ENOB
occur as the yield approaches 0% and 100%. We attribute the
source of this error to correlations between 7); values. Since the
v, mismatch parameters are correlated, which is shown in (8),
the 7); values are correlated as well. By neglecting these correla-
tions in our statistical model, the frequency of outliers at the tails
of the CDF curves are underestimated. Nevertheless, the error
in the predicted ENOB is relatively small and the expressions
for the CDF of X given in (35) and (36) offer a reasonably accu-
rate estimate for the ENOB yield of SAR ADCs and, in general,
all binary weighted ratiometric converters.

V. SIMPLIFIED YIELD EXPRESSION

The ENOB yield model provided by (34)-(36) from
Section IV expresses the yield as a function of sigma mismatch
and bit resolution. These equations, however, are computation-
ally expensive and cannot be inverted to calculate mismatch as
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a function of the yield. In this section, we therefore offer an ac-
curate, yet simple, approximation for these expressions which
are invertible and allow both the bit resolution and capacitor
mismatch to be represented as functions of the ENOB yield.

In what follows, we first develop a single design equation that
relates the yield, capacitor mismatch, ENOB, and bit resolution
in a more convenient form than (35) and (36). We then present
a sample calculation showing how to extract desired parameters
from this new yield expression. Finally, we conclude this section
by comparing this compact yield expression to both simulation
results and the full expressions derived in Section V.

A. Formulation of Simplified Yield Expression

In (34), we express the probability of maintaining some min-
imal ENOB as a function X, where X is defined as a sum of
Chi-Squared random variables with marginal PDFs described
by (29). Since the sum of independent and identically distributed
(iid) Chi-squared random variables follows a Gamma distribu-
tion, we standardize X in terms of mismatch and bit resolution
and approximate its standardized CDF with a normalized in-
complete Gamma function, which is the analytic form of the
CDF for sums of iid Chi-squared variables. The standardization
of X is provided in (37) and the form of our approximation for
the standardized CDF is given in (38)—where 7 represents our
standardized variable, and F'z(z) is the CDF of Z expressed as
an incomplete Gamma function. Furthermore, we denote I as
the Gamma function and let £ and b represent the shape and
scale parameters of Fz(z).

y Cll()lll 2
Z:X-‘)’\[ . ] (37)
bz
1
:r— / th=letdL. (38)
0

Using numerical optimization, we calculate values for k£ and
b which minimize the error between the CDF given in (38)
and standardized forms of the full CDFs given in (35) and
(36) across the entire 8—14 bit resolution range. A complete
formulation of our simplified yield approximation is given in
(39)—where ENOByn is the minimum desired ENOB, NN is
the resolution in bits, &../Cy,om is the standard deviation of the
fractional mismatch, Fz(z) is the CDF of Z as described by
(38),17T" is the Gamma function, and both £ and b are empirical
fitting parameters.

P(ENOB > ENOByn) =P(X < 4N-ENOBumiv _ 1)

2

v CHOIH -
Z=X-27N [—]
(TC
by/z
1
Fz(z2) == [ t*te tdt
2(2) F(k:)/ ‘
0

k=7944 b= 13.146. (39)

17Both the expressions for Fz(z) and its inverse are standard functions in
most commercial math programs.
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9% Parameter Values
N =9; SIGMA = 0.1, ENOB_MIN = 7.7;
YIELD = 0.95; k =7.944; b = 13.146;

% Yield Calculation
X=4"(N-ENOB_MIN)-1;
Z=X{2"N[SIGMA~2;
YIELD=gammainc(b*sqrt(Z),k)

% Sigma Calculation
X=4~(N-ENOB_MIN)-1;
Z=(gammaincinv(YIELD,k)/b)"2;
SIMGA=sqrt(X/Z/2"N)

Fig. 9. Example MATLAB code for implementing the yield equation provided
in (39). This code calculates the yield as function of resolution and mismatch
and calculates mismatch as a function of yield and resolution.

Equation (39) relates yield, mismatch, ENOB, and resolu-
tion in a single closed form expression. For simplicity, we offer
MATLAB code in Fig. 9 as an example of how to interpret
(39)—where we have implemented Fz(z) using the standard
function provided by the software. When this code is executed,
the yield calculation will return 95% for YIELD and the sigma
calculation will return 0.1 for SIGMA. We omitted the resolu-
tion calculation, but this calculation is easily derived from the
sigma calculation by rearranging the terms.

B. Comparison of Yield Expression

We now compare the yield expression from (39) to both
the full expressions from Section IV and simulation results. In
Fig. 10, we plot the difference between yield values calculated
using the approximation given in (39) and analytic values cal-
culated using (35) and (36) as standardized to Z through (37).
As shown in Fig. 10, the error in the yield values, expressed as
a difference in percentages, is within £0.16% over the range of
resolutions between 8—14 bits. This shows that the simplified
expression provided by (39) is a good approximation of the full
expressions from Section IV.

In Figs. 11 and 12, we compare ENOB values calculated
using (39) to simulated values at a constant yield of 95%. The
simulated yield values are obtained using a 1024 point FFT with
a sample of 300,000 randomly mismatched SAR ADCs gener-
ated at each resolution and each standard deviation of mismatch.
As shown in Fig. 11, the analytic ENOB values obtained from
(39) agree with the simulated values, and as shown in Fig. 12,
these analytic ENOB values match within £0.12 bits at a con-
stant 95% yield.

Equation (39) represents a simple and accurate design equa-
tion for calculating yield. In (39), the CDF of X is standard-
ized and related to a normalized incomplete Gamma function.
Since both the incomplete gamma function and its inverse are
standard functions in most numerical software packages, (39)
provides a convenient design approximation which relates mis-
match, ENOB, and yield for binary weighted ratiometric con-
verters.

Although we have neglected losses in ENOB that occur
from comparator noise, k7'/C' noise, and sampling jitter, (39)
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Fig. 10. Error in yield values between (39) and the full expression given by
(35) and (36) as standardized to Z through (37) at each resolution from 8-14
bits. The error is expressed as difference in percentages. Since the differences
in yields associated with each of the 8—14 bit curves resemble one another so
closely, we do not distinguish between the 7 individual curves. As shown, the
absolute error between the yield values is within 0.16% which indicates that
the Gamma Distribution approximation from (39) matches the full expressions
very well.
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Fig. 11. Comparison between simulated and the analytically calculated ENOBs
using the approximation from (39) for a constant yield of 95%. The plot shows
the minimum value of ENOB allowed for a good ADC to achieve a yield of
95%. As shown, the simulated values of ENOB match the analytic curves.
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Fig. 12. Error between simulated and analytically calculated ENOBs using the
approximation from (39) with a constant yield of 95%. The error between the
analytic and simulated ENOBs is less than £0.12 bit.
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can accommodate a more comprehensive yield analysis using
these additional noise sources. Assuming these additional
noise sources are independent, we can normalize each of their
powers by A?/4 and add them to X in (34). Once included in
X, we can we can calculate a refined ENOB yield equation by
convolving the PDFs of the additional noise power terms with
the PDF for X.

VI. CONCLUSIONS

In this paper, we develop a yield model for binary weighted
SAR ADCs based on ENOB which is applicable to all binary
weighted ratiometric converters, and we present the results as
an accurate and easily implementable design equation. In addi-
tion, we derive an exact analytical expression relating mismatch
and resolution to ENOB for uniformly distributed signals, and
also offer an accurate expression relating mismatch and resolu-
tion to ENOB for sinusoidal signals. This work presents the first
mathematical expression relating resolution, mismatch, ENOB,
and yield. From this work, the mismatch required to achieve a
certain ENOB with a particular yield can be calculated, and the
fundamental limit on accuracy for binary weighted ratiometric
converters can be estimated in terms of component matching.

APPENDIX |

CORRECTION FACTOR FOR SINUSOIDAL DISTRIBUTIONS

In this Appendix, we derive a linear scaling factor «« which
estimates the noise power contributed by sinusoidal signals in
terms of the noise power contributed by uniformly distributed
signals. As shown by (4) and (5), the average noise power of
a single-ended DAC is expressed as the sum of the quantiza-
tion noise and the mean squared INL. This noise power formu-
lation suggests that we can obtain the noise power for a sinu-
soidal distribution by reweighting the mean squared INL values
according to the probability mass function of a sinusoidal distri-
bution. In what follows, we first develop an expression for the
squared INL values and then use this expression to calculate the
average INL noise power contributed by both uniform and si-
nusoidal DAC code distributions. Finally, we extract the linear
scaling factor o from the ratio of these noise powers.

We obtain an analytic formulation of the of the squared INL
values by simulating the INL of mismatched differential DACs
and numerically calculating the mean squared INL at each code.
Fig. 13 graphs the simulated mean square INL values, and (40)
provides a quadratic approximation of the results—where ®; is
the INL at code ¢, IV is the number of bits, and A is the peak
amplitude of the squared INL values.

- ALZ i) 0<i<oN-1
2= (”‘Zw_ﬁf)?'i—Q‘”‘l) N1 coN (40)
Ar—gy=— 27 < <2

To simplify the calculations, we normalize the code range of
(40) to half a period. The normalized INL expression is given
in (41)—where « is the normalized index variable.

s | 4Ax(l — =)
®$_{¢Mx—U@—x)

0<r<1

l<cwc2 1)
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Fig. 13. Simulated values of the normalized mean squared INL at each code
of an N bit DAC. The INL values were obtained by averaging the squared INL
values at each code across randomly mismatched DACs.

Assuming an infinite resolution DAC with continuously dis-
tributed INL values, we estimate the average noise power con-
tributed from uniformly distributed INL errors by integrating
(41) across one period of the normalized code range. This cal-
culation is shown in (42).

1
2A
I/vnzoise?INL =44 / T 1- T = T (42)
0

Similarly, we calculate the average noise power contributed
from sinusoidally distributed INL errors by weighting the
squared INL values according to a sinusoidal probability dis-
tribution and again integrating across a normalized code range.
This calculation is shown in (43).

1
84 [ z(1—z)

24(4 — )
V1 — g2 .

1%

noisc,INL —

dz = (43)

Letting « equal the ratio of these noise contributions, we ob-
tain the estimate for v given in (44).

=306 -7) & g107.

(44)

With this value for «, we can now estimate the noise power
contribution from a sinusoidal signal in terms of a uniformly
distributed signal, which enables us to estimate the ENOB of a
sinusoidal distribution and compare results with standard ADC
test measurements.

APPENDIX II

FULL YIELD APPROXIMATION—CDF OF X DERIVATION

As shown in (34), the probability of maintaining some min-
imal ENOB can be expressed as the probability that X remains
within some bound determined by the desired ENOB. There-
fore, we can estimate the ENOB yield using the cumulative
distribution function (CDF) of X. In what follows we will de-
rive the CDF for X and compare the analytic expression for the
ENOB yield to simulation results.
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Treating the #; in (34) as independent random variables, we
can express the PDF of X as the series convolution of the eta;
PDFs, which are defined in (29). This expression for the PDF
for X is shown in (45)—where I1* denotes the convolution op-
erator.

(45)

To obtain the CDF for X, we must compute the series convo-
lution shown in (45). Although we can efficiently compute this
convolution by transforming each of the n; PDFs into the s do-
main and multiplying their moment generating functions,!8 the
resulting s domain expression we obtain for X is poorly struc-
tured and lacks a clear procedure for inverting the transforma-
tion and recovering a PDF.!9 Furthermore, a direct numerical
calculation of this series convolution is troublesome since the
PDFs of #; are singular at the origin, which leads to numerical
instability. In lieu of these difficulties, a less straightforward ap-
proach is used to derive a computationally feasible expression
for the PDF of X .20

The method we employ to derive the CDF of X is based on
an s domain transformation over convolved pairs of ;. First, we
will analytically compute the convolution over particular pairs
of 7,;, and then perform an s domain transformation on these
expressions to obtain the moment generating functions. Next,
we multiply the resulting moment generating functions and ob-
tain a form for the moment generating function of X which is
invertible. Finally, we recover the PDF of X and integrate to ob-
tain the CDF. Following this procedure, we obtain an analytic
expression for the CDF of X amenable to numerical approxi-
mation using standard numerical integration techniques.

Letting n;; represent the sum of 7; and n,, we can express
the PDF of n;; as the convolution of the #; and 7; PDFs as in
(46)—where o; and o; are described in (45).

—t o, =t
[H-](U - + —(r} 5 )] dt.
J

CXpP 2%

2271'00 / Vi —1)
(46)

Using the trigonometric substitution # = 7 cos? @, we reduce
(46) into the alternative formulation shown by (47), which re-
sembles the PDF of an exponential random variable. The inte-
gral expression given in (47) represents our final simplification
for the PDF of ;.

fa,;(n) = P / —Aiandp
"0
cos2 @  ¢in’#
)\’i" = v 5 - 47
7 QUf 2(sz- “7)

I8Moment generating functions are analogous to Laplace transformations,
where convolutions become products in the s domain.

19The moment generating functions for 13; each contain distinct branch points
along the real axis.

20A simple closed form expression for the CDF of a linear combination of
Chi-Squared variables does not exist, but possible alternative computational so-
lutions to this problem can be found in [22], [23], where [22] offers an algorithm
for numerically inverting the moment generation function, and [23] presents a
asymptotic expansion based on an infinite series of incomplete gamma integrals.
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Next, we transform (47) into the s domain by calculating its
moment generating function. Since the expression in (47) is ab-
solutely convergent within the region of convergence for s, we
can apply Fubini’s Theorem and interchange of the order of in-
tegration during this transformation. The resulting moment gen-
erating function for 7;; is shown in (48)

MHij(S) = TG0 /
70
cos?f  sin’é
i i

The expression given in (48) is the moment generating func-
tion of the convolution over the pairs #; and ;. From a practical
perspective, however, the integrand of (48) is just the moment
generating function of an exponential random variable. Since
moment generating functions formed through products of ex-
ponential random variables are easily inverted using Cauchy’s
Residue Theorem,2! we can generate an invertible representa-
tion for X in the s domain by multiplying the moment gener-
ating functions derived from convolved pairs of #;.

Assuming that the resolution of the ADC is an even number
of bits, the number of terms summed in X is even, and we
can reduce the series convolution described by (45) into a se-
ries product of moment generating functions of the form given
by (48). We will address the case where X is the sum of an
odd number of terms later. Multiplying each of these moment
generating functions, we obtain (49)—where Mx(x) is the mo-
ment generating function of X, i denotes the moment generating
function derived from z-th convolved pair of 7, 79;_» is the i-th
even ¢ from (45) including oy, and o9; ; is ¢-th odd o from
(45).22

) T N/2 "
Mx(S)Z / / H ()\A—75> (101"'(19[\"/2
0 o =1 7
1 29, in” 6,
Ai=—— X\, = cos 81112 . (49
T2 2021 203,y 205,

Using Cauchy’s Residue Theorem to invert (48), we recover
the PDF of X. Integrating this PDF, we obtain the CDF for
X as given in (35)—where o2;_5 is the i-th even o from (45)
including oy, o9;_1 is ¢-th odd ¢ from (45).

Fx(z) = /

el

s

N/2

/ZBe Nt - df adt

0

O\l

A\/z
A
B;, = { A — J
' L( g (Aj - -*‘>
s— Xy
cos?f; sin?6,;
Ai:% )\i=92 oo . (35

TO2i—202i—1 205; o9 403, 4

2lComputationally, inverting moment generating functions formed through
products of exponential random variables is the same as performing an Inverse
Laplace Transform on a transfer function with a polynomial denominator.

22As long as the sigma values are sequenced in order of their magnitudes,
the poles of the integrand in (48) remain unique throughout each dimension of
the integration and complications arising from repeated roots are avoided when
applying Cauchy’s Residue Theorem.
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Equation (35) is the CDF for X when the ADC resolution is
even. Since the integrand of this expression is finite across all
dimensions of #, and the limits of integration are well defined,
(35) is numerically well behaved. Through (35), we can numer-
ically estimate the CDF of X and subsequently the ENOB yield
of even resolution ADCs.

When the resolution of the ADC is an odd number of bits,
however, the number of terms summed in X is odd. If we
imagine constructing an ADC with odd number of bits by
adding one bit to an even resolution ADC, we can treat (48)
as the moment generating function for the even contribution.
Using Cauchy’s Residue Theorem to invert (48) and then
convolving the resulting PDF with the PDF for efay_1 to
capture the extra bit, we obtain the PDF for X in the case of
odd resolutions. Integrating this expression, we obtain the CDF
of X as shown in (36)—where 72; o is the i-th even ¢ from
(45) including o, g2;_1 is 2-th odd o from (45), and on_
denotes the unpaired value from (45).

&

Fx(z) = /

N/2
Z ¢t dby - - dfix padipdt
0 i=1

\‘\Jl’*
- \IvH

)

N/2 A
Bi= |(A\i—s ’
2 ( 3 '5) H ()\J _ S)
I=1 s
1 cos?f;, sin?é;
Ai=— AN=3 52
TO2—202i—1 205, o 205 4
2t cos?
C, = B, sin %7} 3 w; = )\, sin 2 + —Ob L (36)
ON-1 20,4

From a computational standpoint, the CDFs given by (35)
and (36) are quite expensive, and the time required to numer-
ically estimate the CDF for X with reasonable error becomes
impractically large as the dimension of the integrals becomes
large. Nevertheless, the CDFs given by (35) and (36) along with
probability relationship given by (34) allow us to estimate the
ENOB yield of a SAR ADC more efficiently than circuit level
Monte-Carlo simulations. We provide a more convenient ap-
proximation for the CDFs given in (35) and (36) in Section V.
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