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Abstract—This work presents a bidirectional neural interface
circuit that enables simultaneous recording and stimulation with
a stimulation artifact cancellation circuit. The system employs a
common average referencing (CAR) front-end circuit to suppress
cross-channel environmental noise to further facilitate use in clini-
cal environment. This paper also introduces a new range-adapting
(RA) SAR ADC to lower the system power consumption. A proto-
type is fabricated in 0.18 um CMOS and characterized and tested
in vivo in an epileptic rat model. The prototype attenuates stimu-
lation artifacts by up to 42 dB and suppresses cross-channel noise
by up to 39.8 dB. The measured power consumption per channel
is 330 nW, while the area per channel is 0.17 mm?.

Index Terms—Closed-loop stimulation, low power, neural
recording, noise cancellation, SAR ADC.

I. INTRODUCTION

TUDIES have shown that neurostimulation, or direct cur-

rent stimulation of neural tissue, significantly lessens
symptoms in patients with neurological disorders. A 2-year
study of a responsive neurostimulation system (NeuroPace)
observed an average seizure reduction of 50% in 191 epilepsy
patients [1]. Likewise, deep brain stimulation (DBS), a popular
neurostimulation technique for treatment of various neuro-
logical diseases, has improved the quality of life for many
patients worldwide [2]. Further adoption of neurostimulation as
mainstream clinical treatment will be enabled in part by minia-
turization of the electronics used to deliver stimulation current.
A small form factor is important for implantable systems,
while low power consumption is essential for long-term chronic
deployment. Automated control of neurostimulation systems
is also highly desired, as it would minimize patients’ need
for medical supervision and hospital visits. In an automated
system, a closed-loop neural interface controls current stimu-
lation to a particular brain region by monitoring the recorded
neural signal from the neighboring neural tissue and adjusting
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stimulation parameters in a feedback fashion. Fig. 1 demon-
strates the general concepts where a closed-loop controller
detects seizure-related biomarkers at the onset of a seizure and
triggers a current pulse train to suppress the seizure. Such sys-
tems have been proven to successfully lower seizure occurrence
rate [3], [4].

Recent research on neural interface systems has focused on
reducing system power consumption and footprint area [5]—[7].
However, this research has rarely addressed problems related
to the noisy environment and the side effects of stimulation.
Proper operation of a closed-loop neural interface microsystem
requires simultaneous recording and stimulation. In practice,
continuous monitoring during stimulation presents a challenge
due to large saturating artifacts appearing with the signal, as
described in more detail in Section II. Only a few published
techniques, such as signal blanking or symmetrical differential
stimulation and recording, attempt to mitigate this problem [8],
[9]. However, limitations in sensing capability and electrode
design make these techniques unsuitable for universal use. In
addition, recorded signals can be corrupted by common-mode
environmental noise, which can come from motion artifacts or
can be coupled from the power lines. This coupled noise signif-
icantly reduces the signal-to-noise ratio (SNR) in the recording
channel.

To combat these problems, we present a novel neural inter-
face system architecture incorporating new signal conditioning
front-end features [10]. A mixed-signal adaptive stimulation
artifact cancellation circuit removes stimulation artifacts at the
front-end of the recording channels to prevent preamplifier sat-
uration. A noise removal technique called common average ref-
erencing (CAR), implemented at the front-end, removes cross-
channel common-mode noise and improves channel SNR. In
addition, a new range-adapting (RA) SAR ADC architecture
provides more power efficient digitization of the neural signal.
These features, as well as other relevant system-level details,
are presented in this paper in the following way. Section II
discusses the cause of stimulation artifacts and explains the
stimulation artifact cancellation algorithm. Section III analyzes
the sources of common-mode noise and introduces the CAR
algorithm. Section IV describes the circuit implementation of
the new architectural elements as well as the new RA SAR
ADC. Sections V and VI show recording channel characteriza-
tion and in vivo measurements, respectively. Finally, conclusion
is drawn in Section VII.
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Fig. 1. Concept diagram of closed-loop stimulation for seizure suppression.

II. STIMULATION ARTIFACT CANCELLATION
A. Cause of Stimulation Artifacts

Stimulation artifacts inherently form at the recording inter-
face during concurrent sensing and stimulation. Fig. 2 depicts
simultaneous stimulation and recording and shows the cor-
rupted recorded signal. We expect a stimulation-injected cur-
rent to travel to a nearby neuron to affect its state by either
triggering or inhibiting its spiking activity, while the recording
probe monitors the neuron’s activity throughout this process.
Unfortunately, due to proximity of the recording and stimula-
tion probes, a fraction of the stimulation current bypasses the
neural tissue and directly couples onto the recording probe.
Because the direct path is short and the stimulus current is
usually larger than the neural extracellular ionic currents, the
resulting stimulation artifact dominates the recorded signal.
This leads to two problems. First, the large artifact current
can saturate the sensitive preamplifier, causing signal loss and
lowering the biomarker detection rate. An increased dynamic
range (DR) might mitigate this problem but at the cost of high
power consumption. Second, even if the artifacts do not satu-
rate the amplifier, they might be mistaken for the biomarkers
themselves, leading to a high false biomarker detection rate.

While there are many ways to alleviate the degraded per-
formance, the most direct and best performing strategy is to
cancel the artifacts as early as possible in the recording signal
chain to prevent saturation and signal loss. Previous approaches
to artifact cancellation include signal blanking and symmetric
sensing. In signal blanking, the input to the recording amplifier
is simply turned OFF during stimulation [8]. While this pre-
vents the amplifier from saturating and temporarily losing its
input voltage bias, any signal appearing during the off-period
is lost. In symmetric sensing, the recording and stimulation
electrodes are placed in a particular configuration to differ-
entially cancel the artifact [9]. Here, the stimulation site is
placed equidistantly between two differential recording sites
so that the artifact equally couples onto each recording chan-
nel is rejected by the differential amplifier. While the neural
signal is preserved in this scheme, it requires an inflexible elec-
trode configuration that possibly hinders the effectiveness of the
stimulation. Instead, our adaptive approach provides a universal
architecture for artifact cancellation in a wide variety of appli-
cations that preserves the recorded neural signal while avoiding
the shortcomings of previous works.
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B. Adaptive Cancellation of Artifacts

Our approach to artifact cancellation circuit stems from
the similarity in coupling between stimulating and record-
ing probes of a closed-loop stimulation microsystem to the
near-end crosstalk (NEXT) problem in wireline communica-
tion systems. In NEXT, a strong transmitter output couples to
the input of the sensitive receiver amplifier and corrupts the
received signal, increasing the system’s bit-error rate [11], [12].
However, by utilizing the direct correlation between the trans-
mitted signal and the observed artifact, a number of filtering
techniques have been developed to cancel the artifacts. One
such technique, called adaptive noise cancellation, learns the
filtered crosstalk noise response of the channel and subtracts it
from the recorded signal [13]. Due to its simplicity and gen-
eral applicability, we apply a similar approach to cancel neural
stimulation artifacts in an implantable neural interface [14].

Analysis of the algorithm begins with the simplification of
neural tissue response to a linear time-invariant (LTI) filter.
The recorded signal y(f) can be expressed as a linear sum of
the neural signal x(¢) and the artifact a(r) as shown in Fig. 3.
Furthermore, the artifact a(f) can be expressed as a stimulation
signal s() filtered by the neural tissue response b(t)

y(t) =z () +a(t)=az(t)+b(t)*s(t). (1)

Adaptive noise cancellation artificially recreates the response
of the neural tissue in order to subtract it from the corrupted sig-
nal. To perform this task, an adaptive filter b (t) (in Fig. 3) learns
the impulse response of the neural tissue. When stimulation s()
is fed through this filter, its output recreates the artifact a (¢)
and this recreated artifact is subtracted from the recorded signal
to cancel the real artifact as shown in the following equation:

i(t)y=ex(t)+a(t)—a(t)
=2 (t)+b(t)*s(t) —b(t)*s(t). 2)

By inspection of the equation above, when the fully trained
filter b (t) approximates the neural response b (t), the stimula-
tion term s(7) is cancelled, and the recovered output signal Z: (¢)
approximately equals the original neural signal z (¢).!

A key block in adaptive noise cancellation is the learning
algorithm of the adaptive filter. The least mean squares (LMS)
learning algorithm, first presented by Widrow et al. and exten-
sively used in telecommunications, is simple and reliable [15].
In LMS, the adaptive filter coefficients are updated every cycle
to better approximate the desired response. The update quantity
is derived by applying the steepest gradient descent approach
to minimize power of the noise error & (t). As shown in [14],
the online LMS algorithm predicts the coefficient update, need-
ing only the value of the recovered output signal & (¢) from the
previous cycle and the stimulation input s(¢) as follows:

b(t+1)=b(t)+ ps(t)2(t). A3)

'Tt is important to note that while the actual nonartifact neural response is
also correlated to the stimulation signal, it is much delayed and not LTI, if the
filter length is kept short enough, the real neural signal is not cancelled. The
neural signal will thus be omitted in further explanation.
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Fig. 2. Formation of stimulation artifacts and corruption of neural signal through direct coupling of stimulation signal to recording probe.
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Fig. 3. System diagram of stimulation artifact addition and cancellation
through adaptive filtering. The recorded signal y () is the corrupted neural sig-
nal picked up at the tissue—circuit interface, while the recovered signal Z (t) is
the on-chip recovered neural signal.

The adaptation constant p is an adjustable knob for the
user to trade adaptation speed for accuracy. A simplified ver-
sion, called sign—sign LMS, eases the hardware requirements
by performing computation on a sign-bit signal representation,
resulting in the following update equation [16]:

b(t + 1) = b(t) + p((s(t) x sign(&(t))). “)

To show the effectiveness of the scheme, the algorithm is
simulated with prerecorded neural data in Fig. 4. We arti-
ficially corrupt a known signal (here, a sinusoidal wave for
clarity) with prerecorded artifact waveforms, added at prede-
termined times that are correlated to the stimulation waveform.
As the algorithm runs for a few stimulation cycles, the filter out-
put begins to resemble the added artifacts. In fact, the plotted
impulse response of the adaptive filter at the end of simulation
in Fig. 5 resembles a single added artifact, since the filtered arti-
fact waveform is simply a pulse train convolved with a single
eight sample long artifact-shaped sequence. Furthermore, the
recovered signal shows a decrease in correlated crosstalk noise
without significant distortion of the original uncorrelated signal.

The selection of the adaptive filter length was guided by
maximizing the subtraction of artifact without removing the
desired evoked neural potential. An analysis of typical elec-
trocorticograph (ECoG) and local field potential (LFP) signals
showed a 2 ms period between the stimulation pulse and
earliest neural response, and during this time period, the arti-
fact can be safely removed. Because the filter is sampled at
the ADC frequency of 4 kHz, an 8 tap filter is sufficient to

attenuate most artifacts while preserving the nonartifact neural
response.

III. COMMON-MODE NOISE REJECTION

As studied in [17], various environmental noise sources such
as power lines and fluorescent lights capacitively couple onto
the electrodes, the electrode wires, and the preamplifier inputs,
potentially causing large amplitude common-mode noise. This
noise can be cancelled through differential recording, where
noise in two neighboring channels is rejected as common-
mode signal. Inconveniently, differential recording requires the
user to double the number of electrodes and may also remove
important signals shared between the channels. As a com-
promise, a large single reference electrode is often used to
subtract the reference noise from multiple channels without
introducing localized neural signals. Unfortunately, because of
the impedance mismatch between the recording and reference
electrodes, line noise couples differently to the positive and
negative inputs.

Instead of relying on a single electrode to provide an accu-
rate reference signal, we can create a new reference signal from
the existing channels. Ref. [18] creates this new reference sig-
nal in a software postprocessing scheme called CAR. CAR has
become a common step in signal conditioning in neuroscien-
tific literature [19], [20]. As shown in Fig. 6, the new reference
signal is computed by averaging neighboring channels and sub-
tracting this average from every channel. If used properly, the
average holds most of the common-mode noise and little of
neural signal, thus providing a clean, stable reference signal.

While it has been previously implemented as a software post-
processing step, we implement CAR at the recording front-end.
By cancelling the noise before final amplification and digitiza-
tion, the DR constraints of the analog circuitry can be greatly
relaxed. Challenges include unintended signal cancellation if
the CM signal itself is of importance—this can be alleviated by
averaging a sufficient number of channels so that the average
contains a minimal amount of localized neural signal. Analysis
of experimental neural data (in Fig. 7) shows that even a 4
channel CAR (CAR-4) can substantially improve SNR, while
the use of 16 channel CAR (CAR-16) only slightly further
increases SNR. This relatively small number of needed chan-
nels allows us to minimize the circuit area for CAR as described
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Fig. 4. Simulation of the stimulation artifact cancellation algorithm with artificial neural data showing the system learning the response of the tissue.
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Fig. 6. Top-level diagram of CAR algorithm.

in Section IV-B. The common average reference can also be
contaminated by a single very strong, or perhaps broken, chan-
nel. For this reason, the user should be able to eliminate that
channel from the average calculation so that the noise does not
bleed into other channels.
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Fig. 7. (a) CAR-4 4 channel groupings mapped onto an ECoG electrode grid.
(b) Comparison in SNR of ECoG recordings between raw data, active CAR-4,
and active CAR-16 algorithms.

IV. CIRCUIT IMPLEMENTATION

The proposed system architecture, shown in Fig. 8, consists
of eight recording channels and four stimulation channels. Each
recording channel consists of a preamplifier with a gain of 100,
a programmable gain amplifier (PGA) with gain ranging from
1 to 10, and an ADC. The bandwidth of the preamplifiers is
deliberately limited to a range of 1 Hz to 2 kHz to pass ECoG
and LFP signals, which are most commonly used for neuro-
modulation control. The sampling rate of the ADC is set at 4
kS/s to properly sample the neural signals without aliasing. The
resolution of the ADC is set to 10 bits to maintain the channel
input-referred noise below 5 Vs (i.e., below the biological
noise limit) while providing the ADC differential input DR of
1 V. The recording channels are split into two groups of four
channels. In each group, every channel can be referenced to
an average formed from any combination of these channels.
The CAR circuit is placed after the preamplifier and before the
PGA to remove the noise before final amplification and digitiza-
tion. A stimulation artifact cancellation filter is implemented for
every individual channel, as we cannot expect a similar coupled
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Fig. 9. Schematic of stimulation artifact cancellation circuit. Analog subtrac-
tion is framed in gray, while the adaptive filter is framed in black.

stimulation artifact for each channel. The stimulation data input
is fed into the stimulation control block and also to the bank of
stimulation artifact cancellation filters. Lastly, the stimulation
channels themselves consist of current digital-to-analog con-
verters (DACs) and digital timing and control circuitry. The
current DAC resolution of 7 bits and DR up to 8 mA are enough
for most neuromodulation applications.

A. Stimulation Artifact Cancellation Circuit

The stimulation artifact cancellation scheme is implemented
with the mixed-signal circuit shown in Fig. 9. First, the single-
bit stimulation input s(¢) is fed through the digital adaptive
filter. The filter output, or the digitally recreated artifact a (¢), is
converted into a differential analog signal using two DACs. This
analog artifact replica is then subtracted from the corrupted neu-
ral signal at the preamplifier input to prevent signal saturation in
the channel. Finally, the sign of digitized recovered signal Z (t)
(from the 10 bit ADC) and single-bit stimulation signal s(#) are
fed to the adaptive filter to train its coefficients.

A pair of capacitive DACs converts & (t) into a differential
analog signal. The DAC’s 8 bit resolution is chosen to reduce

7
aw = ZI;, sit—1) \l;i(t + 1) = b;(t) + sign(®(t)) x sign(s(t — 1))
i=0

a() Y

sign(x(f))

x8

sign(s(t-i))

FIR filter tap  Adaptive coefficient update

Fig. 10. Schematic of a single filter tap implementing LMS update and filter
multiply and accumulate.

artifacts by up to 42 dB. From data analysis, this is sufficient to
prevent channel saturation in most situations. While an increase
in resolution would only result in a marginal increase in power
consumption (less than 1 nW per channel for every additional
bit), the area of the DAC would increase exponentially with
extra resolution, since the LSB capacitor size is limited by mis-
match. The 8 bit DAC resolution allows us to keep the area of
the DAC below 12% of the complete channel layout area. A
further advantage is that the capacitive DAC architecture offers
the ability to scale the DAC LSB size, which corresponds to
the  step size of the learning algorithm in (4), by adjusting the
capacitive DAC reference voltage.

A standard 8 tap LMS digital adaptive filter nominally
requires 16 multipliers and 15 adders to perform necessary
computations, significantly contributing to the system power
consumption and area. To minimize this overhead, we propose a
simplified parallel architecture that eliminates computation ele-
ments by utilizing the sign—sign LMS algorithm in (4) that takes
advantage of the simplified single-bit inputs.

First, the adaptive filter coefficients are updated by the
following matrix combination:

bo (¢ +1) bo (1) s (1)
bl 1 bl s(t—1

(t-+ | _ :(t) © sign((3 (1) ( | ) ®
by (t+1) br (t) s(t=7)

The sign of the error (or recovered) signal & () is represented
by the MSB of the recorded signal, and it is taken directly from
the ADC output. The single-bit stimulation input, which repre-
sents a stimulation pulse with 1 and a lack of stimulation with O,
is fed from the stimulation circuit and is appropriately delayed
by a shift register for each of the eight taps. The eight coeffi-
cient updates in (5) are then computed in parallel. Fig. 10 shows
the hardware implementation of a single filter tap and coeffi-
cient update. On the right-hand side of Fig. 10, the single-bit
s (t — 4) input is multiplied by the sign of & (¢). This multiplica-
tion, performed only with a single AND gate and a direct node
connection, yields a 2 bit number representing —1, 0, or +1.
This product is then added to the 8 bit b; (t) coefficient, com-
puted and stored in the previous cycle, creating a new updated
coefficient b; (t 4 1).
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Next, the b (t) coefficients are fed to the FIR filter to com-
pute the artifact replica using the following FIR filter matrix
multiplication:

s(t.—7)

The computation above is implemented with eight multipli-
ers and seven adders. Similar to the coefficient update described
above, the multiplication and addition is performed in parallel
for each tap, using a total of eight multipliers and seven adders.
However, the single tap FIR filter multiplication is implemented
with only eight AND gates, as shown in Fig. 10 on the left-hand
side, since it uses a single-bit stimulation signal s (¢ — %) as the
second operand. Finally, the seven 8 bit ripple-carry adders sum
the multiplier outputs to create a (¢).

In summary, the full adaptive filter uses only 15 ripple-carry
adders and no full multipliers. Because the filter runs at the very
low ADC sampling frequency (4 kHz), the gates are minimum-
sized to further reduce power consumption. Since most logic
gates are active only when nonzero bits appear in the stimula-
tion waveform, the average power consumption at conventional
stimulation rates is below 11 nW and is almost negligible in
comparison with the power consumption of the rest of the
system.

B. CAR Circuit

CAR is implemented at the input of the second-stage amplifi-
cation to relax the DR of the PGA. The circuit implementation
is shown in Fig. 11. Preamplifier outputs from four neighbor-
ing channels are fed into a capacitive averaging network, one
per channel. An advantage of this approach is that it is passive
and does not add to the total power consumption. Moreover, the
switchable capacitor array allows full reconfigurability in case
undesirable channels should be disconnected. The additional
capacitors increase the area of the recording channel by less
than 3% if the number of references is kept at 4 (sufficiency of
this number of references is shown in Section III). Furthermore,
these capacitors can be placed above the active circuitry to fur-
ther save area. The averaged output is fed into the input of the
PGA with opposing polarity alongside the original preamplifier
connection to effectively subtract the CAR signal. To main-
tain the proper functioning of the averaging when changing the
number of reference channels, input and feedback capacitors
are connected or disconnected to maintain constant gain. Also,
the output impedance of the preamplifiers must be low enough,
so that the changing preamplifier output load due to switching
capacitors does not significantly affect the bandwidth.

C. Range-Adapting SAR ADC

To further lower the average power consumption of record-
ing channels, we also propose a new adaptive ranging technique
for SAR ADCs. Typical recording channels must have a high
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Fig. 11. CAR circuit implementation: the averaging CAR network is imple-
mented for each channel in the group as shown for channel 1.
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Fig. 12. Example of RA SAR ADC range (MSB) following the shape of a
neural signal.

DR to process large signal amplitudes due to artifacts or peri-
ods of high neural activity. However, because high-amplitude
activity in neural signals is relatively sparse, this high DR is
often underutilized. By adapting the DR of the ADC to the sig-
nal, we can minimize the effective number of bits evaluated by
the SAR algorithm and save power. Such system can be also
applied to other types of sparse signals where the activity is low
for majority of the time.

1) RA Algorithm: The RA algorithm adjusts the ADCs DR
in two ways, as seen in Fig. 12. DR is automatically increased
when a sample is detected to be out of range. DR can also be
decreased between sampling cycles with an off-chip controller.
Such a controller, e.g., can predict periods of low activity and
reduce the range accordingly. In our simple implementation, a
timer is set to decrease the DR by a single bit every 200 ms. Any
algorithm which would adjust the range to fit the approximate
envelope of the signal may be considered desirable; however,
such algorithm should not alter the ADC’s range at every sam-
ple since every range calculation requires extra logic power and
it can dominate ADC power consumption.

2) RA SAR Switching Scheme: The RA algorithm is easily
implemented in an SAR ADC with a modified capacitor DAC
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switching scheme by taking advantage of a specific application-
adapted binary search, similar to [21]. Our scheme is divided
into three phases outlined in Fig. 13, namely: 1) sample and
sign check phase; 2) MSB range search; and 3) binary LSB
search. Fig. 14 shows two conversion examples for an in-range
and out-of-range samples by tracking the comparator input volt-
age. First, stage (1) finds the sign of the sampled voltage. The
sign determines which direction the capacitive DAC changes
the comparator input voltage for each SAR bit. Only in stage
(2), does the algorithm search for the location of MSB. The
search algorithm makes its initial guess based on the previous
sample MSB location which is stored in between samples (bit
7 for both cases in the example). The DAC assigns the pre-
viously found sign bit to the current MSB location, and the
comparator checks if the polarity has changed. If it does not
change, the algorithm performs additional trials by increasing
the MSB location, switching in the appropriate capacitors in
the DAC, and observing the comparator result. When the com-
parator output finally changes, or when the maximum MSB is
reached, the algorithm keeps the found MSB and moves on to
stage (3). At this time, operating in stage (3), the ADC performs
the traditional binary search from the current MSB to determine
the remaining bits. In our scheme, the merged capacitor switch-
ing (MCS) scheme is used to minimize capacitor switching and
power consumption [22].

The proposed RA SAR switching scheme has two key advan-
tages. First, the range-checking phase prevents the ADC from
losing any sample information, as the capacitor switching is
performed without losing any charge on the top plate. Second,
if the range-checking phase accepts the initial MSB location
guess and does not have to perform additional trials, the ADC
does not have to switch its comparator and DAC capacitors for
all the bits in the ADC. This, on average, greatly reduces the
power consumption of the ADC comparator and the capacitor
DAC. As previously mentioned, [21] also presents an RA SAR
ADC algorithm which, in contrast, begins the search at previous
sample’s LSB. Our proposed RA SAR algorithm is better suited

S — sample and
check sign
M — MSB location

| | search

il [yt
Bit trial I_
71716 5 4 3 2 1Q7|7 8 918 7 6 5 4 3 2 1
S|M| MCS search S M MCS search
Stage

Fig. 14. Comparator input voltage during RA SAR A-to-D conversions for in-
range and out-of-range samples, respectively. The conversion phases and bit
cycles (bit) are also shown.

for signals which exhibit low amplitudes but are not smooth and
maintain high variance relative to maximum amplitude, as it is
often the case in neural recordings.

3) ADC Power Consumption: Fig. 15 demonstrates the
possible power reduction in an RA SAR ADC. Fig. 15(a) plots
the minimum number of comparisons in the case of correct
initial range guess for every code in the 10 bit ADC. Note
that the minimum initial guess is kept at the sixth bit because
neural signals rarely maintain lower amplitudes. The biggest
power reduction when compared to a traditional MSC SAR
ADC scheme is observed for small input signals. This is due
to the reduced number of significant bits checked by the RA
algorithm.

A code histogram of previously recorded neural data is over-
laid to show that a great majority of the signal does fall in the
power-saving range. In fact, simulations showed a 25% reduc-
tion in the average number of comparisons. In Fig. 15(b), the
capacitive DAC switching energy per code is plotted for the
MCS and RA switching schemes. Similar to the previous analy-
sis, the greatest power savings are found in the middle codes. A
72% reduction in average DAC power consumption is observed.

4) ADC Circuit Implementation: The SAR ADC is imple-
mented in differential fashion and employs bottom-plate input
sampling to reduce parasitic error (Fig. 16). The ADC also uses
an asynchronous architecture. At the beginning of every sam-
ple, the sampling clock triggers a self-timing delay loop that
first clocks the comparator. When the comparator makes the
decision, it activates the SAR logic and sends a signal through
an inverter-based delay line to give time for settling of the
capacitive DAC and to retrigger the comparator for the next bit
conversion cycle.

The SAR logic executes the RA algorithm. The stages of
the algorithm are controlled by the “direction select” flip-flop
and logic. In stage (1), the comparator output Q is stored onto
the “sign detect” flip-flop. After that, the “direction select”
state tells the SAR logic to assign the sign bit to the current
MSB location stored in a finite-state machine (range FSM). The
range FSM is a 5 bit one-hot counter that saves the MSB loca-
tion in between ADC samples and it increases or decreases its
value as required by the RA algorithm. A mux, controlled by
the range FSM and the “direction select” flip-flop, selects the
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Fig. 16. RA SAR ADC architecture schematic.

SAR flip-flops that will be assigned the sign bit. As the logic
detects the comparator polarity change at the end of stage (2),
the “direction select” flip-flop changes its state and begins the
MCS search of stage (3), finds the remaining bits, and stores
them into the 10 bit SAR flip-flops. In between the samples, the
range FSM can be externally triggered by the DOWN control
input to decrease the initial MSB location to be used in the next
sample conversion.

V. MEASUREMENTS
A. System Performance

The prototype is fabricated in 0.18 pm CMOS. Fig. 17 shows
the chip microphotograph. The total area of the recording cir-
cuit is 1.4mm? or 0.17mm? per channel, while the area of
the stimulation circuit is 0.18 mm?. Fig. 18(a) shows the mea-
sured frequency response of the recording channel for four gain
settings: 100, 200, 500, and 1000. Each of the gain settings
maintains a bandwidth of 1 Hz to 2 kHz. Fig. 18(b) shows the
input-referred noise of the full recording channel at the ADC
output with a shorted input. The total measured input-referred
noise is 3.05 WV, between 1 Hz and 2 kHz. The measured
power consumption per recording channel is 0.33 uW.

| Stnmulatﬁ;ﬂ . '
channel

B. CAR Circuit Measurements

Fig. 17. Chip microphotograph.

An in vitro experiment with a 4 channel recording was
conducted to test the functionality of the CAR circuit. The
4 channel waveforms were constructed from a synchronized
60 Hz noise signal. A prerecorded neural signal was then added
to one of the channels. The top plot in Fig. 19 shows the chan-
nel with merged 60 Hz noise and the prerecorded signal. When
CAR is switched ON for the 4 channel group, as shown in the
bottom of Fig. 19, the averaged reference reduces the recorded
60 Hz power by —36 dB, effectively increasing the recording
channel SNR by the same amount.

C. ADC Measurements

The average power consumption of the ADC is 89 nW when
measured at 4 kS/s for a full-range sinusoid input. To test the
functionality of the RA algorithm, the channel input signal
amplitude is swept while monitoring the power consumption of
the full ADC and DAC. Fig. 20 shows a significantly reduced
DAC energy consumption for low-amplitude inputs (by more
than a factor of 4). The shape of the plot is similar to the pre-
dicted DAC energy consumption from Fig. 15. This amounts
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to total ADC power consumption saving of more than 25% for
low-amplitude inputs.

VI. INVIivO MEASUREMENTS

A series of in vivo tests were performed to test the system
functionality in a real application. Recordings were taken
during the stimulation of a rat hippocampus as the rat was
under chemically induced seizures.> Seizures were induced

2The in vivo experiments were performed at the Netoff Epilepsy and
Neuroengineering Laboratory, University of Minnesota under the approval
from the Institutional Animal Care and Use Committee.
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Fig. 21. In vivo experimental results showing stimulation artifact cancel-
lation learning process for 12 Hz 600 pA biphasic stimulation. Top plot
shows the raw time-domain plot of the recording output, middle plot shows
the stimulation timing, and the bottom plot shows the recorded output
spectrogram.
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Fig. 22. Neural recordings of 120 Hz 600 pA biphasic stimulation during
seizure activity (a) without activate artifact cancellation and (b) with active
artifact cancellation.

following the injection of 4 aminopyradine unilaterally into
the CA3 region of the hippocampus. The stimulation was then
applied to the ventral hippocampal commissure (VHC) which
bilaterally innervates the CA3 regions where the seizures are
induced. A recording electrode was placed in the CAl region
of the hippocampus, close to the injection region. In this setup,
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TABLE I
PERFORMANCE SUMMARY AND COMPARISON WITH OTHER RECENT WORKS
[21] [22] [23] This work

Technology 0.18 um 0.13 um 65 nm 0.18 um
Area (per recording ch.) (mm?) ~0.42 ~0.625 0.025 0.17

Rec. power (UW/ch.) 7.35 4.2 2.3 0.33

BW (Hz) ~0.5-7k 0-320 1-0.5k 1-2k

IR noise (UV ) 5.23 2 1.32 3.05
Stimulation artifact cancellation No No No Yes

CAR No No No Yes

the recording electrode has a clear recording of the seizure
activity and the proximity of the recording and stimulation
electrodes results in large stimulation artifacts that test the
artifact removal algorithm.

In initial experiments, recordings were taken when stimulat-
ing the tissue as the artifact cancelling algorithm trained the
filter weights. In Fig. 21, a 12 Hz 600 pA biphasic pulse stim-
ulation train is applied and the response is recorded in time
and time—frequency domain. As the stimulation begins in the
fifth second, large artifacts clearly dominate the recorded wave-
form. Because the artifacts are being clipped at the start of
stimulation, the reduction in artifacts is not apparent until the
15th second as the filter weights become large enough to suc-
cessfully reduce the recorded artifacts. When the filter weights
approach their steady-state values, the artifacts are reduced to
the below-noise level. In a latter experiment, shown in Fig. 22,
we stimulated the brain with and without cancellation as the
seizures were episodically occurring. The noncancelled arti-
facts from the 120 Hz stimulation clearly dominate the seizure
activity both in time and frequency domain. After the cancella-
tion filter is turned ON, the artifacts disappear below the visible
seizure signal, clearly showing the improved signal quality as
the seizure signal becomes unobstructed by the artifact peaks.
Across trials, artifacts are suppressed on average by at least
24 dB; however, this number could be even higher if not for
the high biological noise masking the suppressed artifacts. Note
that the full learning process needs to be performed only once
after implantation, as the neural tissue response does not change
significantly during chronic use of stimulation.?

VII. CONCLUSION

We present a new bidirectional neural interface circuit for
closed-loop stimulation. The microsystem introduces novel
architectural features to combat environmental noise such as
stimulation artifacts and cross-channel common-mode noise,
allowing overall proper closed-loop control. The circuit also
includes a new RA SAR ADC to reduce power consump-
tion. The system was fully characterized and verified in vivo.
Table I summarizes and compares few key specifications with
previously published works highlighting the state-of-the-art
performance. Our work maintains a relatively low area and low
noise in comparison with the published ECoG recording ICs in
[23]-[25]. However, at lower power consumption, the system

3When the filter coefficients reach a steady state, the adapting algorithm can
be turned OFF to maintain their constant value. It can also be periodically turned
ON to adapt coefficients to a slowly changing neural tissue response.

implements new functionality which enables the use in a wider
variety of applications.

REFERENCES

[1] C. N. Heck et al., “Two-year seizure reduction in adults with medically
intractable partial onset epilepsy treated with responsive neurostimula-
tion: Final results of the RNS system pivotal trial,” Epilepsia, vol. 55,
no. 3, pp. 432441, 2014.

[2] M. L. Kringelbach, N. Jenkinson, S. L. F. Owen, and T. Z. Aziz,
“Translational principles of deep brain stimulation,” Nat. Rev. Neurosci.,
vol. 8, no. 8, pp. 623-635, 2007.

[3] A. Berényi, M. Belluscio, D. Mao, and G. Buzsaki, “Closed-loop con-
trol of epilepsy by transcranial electrical stimulation,” Science, vol. 337,
no. 6095, pp. 735-737, Aug. 2012.

[4] F. T. Sun, M. J. Morrell, and R. E. Wharen, “Responsive cortical stim-
ulation for the treatment of epilepsy,” Neurotherapeutics, vol. 5, no. 1,
pp. 68-74, Jan. 2008.

[5] A.Borna and K. Najafi, “A low power light weight wireless multichannel
microsystem for reliable neural recording,” IEEE J. Solid-State Circuits,
vol. 49, no. 2, pp. 439-451, Feb. 2014.

[6] H.Rhew, J. Jeong, J. Fredenburg, and S. Dodani, “A fully self-contained
logarithmic closed-loop deep brain stimulation SoC with wireless teleme-
try and wireless power management,” IEEE J. Solid-State Circuits,
vol. 49, no. 10, pp. 2213-2227, Oct. 2014.

[7]1 R. Muller, S. Member, S. Gambini, and J. M. Rabaey, “A 0.013 mm?2,
5 uW, DC-coupled neural signal acquisition IC with 0.5 V supply,” IEEE
J. Solid-State Circuits, vol. 47, no. 1, pp. 232-243, Jan. 2012.

[8] S. Archer and B. Pless, “Stimulation signal generator for an implantable
device,” U.S. Patent 6 690 974 B22004, Feb 10, 2004.

[9] S. Stanslaski et al., “Design and validation of a fully implantable,
chronic, closed-loop neuromodulation device with concurrent sensing
and stimulation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 4,
pp. 410421, Jul. 2012.

[10] A.E.Mendrela, J. Cho, J. A. Fredenburg, C. A. Chestek, and M. P. Flynn,
“Enabling closed-loop neural interface: A bi-directional interface cir-
cuit with stimulation artifact cancellation and cross-channel CM noise
suppression,” in Proc. Symp. VLSI Circuits, 2015, pp. 108-109.

[11] Y. Hur et al., “Equalization and near-end crosstalk (NEXT) noise cancel-
lation for 20-Gb/s 4-PAM backplane serial I/O interconnections,” IEEE
Trans. Microw. Theory Techn., vol. 53, no. 1, pp. 246-254, Jan. 2005.

[12] C. Pelard, E. Gebara, and A. Kim, “Realization of multigigabit channel
equalization and crosstalk cancellation integrated circuits,” IEEE J. Solid-
State Circuits, vol. 39, no. 10, pp. 1659-1670, Oct. 2004.

[13] B. Widrow, J. R. Glover, and J. M. McCool, “Adaptive noise cancelling:
Principles and applications,” Proc. IEEE, vol. 63, no. 12, pp. 1692-1716,
Dec. 1975.

[14] J. W. Gnadt, S. D. Echols, A. Yildirim, H. Zhang, and K. Paul, “Spectral
cancellation of microstimulation artifact for simultaneous neural record-
ing in sitw,” IEEE Trans. Biomed. Eng., vol. 50, no. 10, pp. 1129-1135,
Oct. 2003.

[15] B. Widrow and J. McCool, “Stationary and nonstationary learning char-
acteristics of the LMS adaptive filter,” Proc. IEEE, vol. 64, no. 8,
pp. 1151-1162, Aug. 1976.

[16] S. Dasgupta and C. R. Johnson, “Some comments on the behavior of
sign—sign adaptive identifiers,” Syst. Control Lett., vol. 7, no. 2, pp. 75-82,
1986.

[17] C. K. Thorp and P. N. Steinmetz, “Interference and noise in human
intracranial microwire recordings,” IEEE Trans. Biomed. Eng., vol. 56,
no. 1, pp. 30-36, Jan. 2009.

[18] K. A. Ludwig, R. M. Miriani, N. B. Langhals, M. D. Joseph,
D. J. Anderson, and D. R. Kipke, “Using a common average reference



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MENDRELA et al.: BIDIRECTIONAL NEURAL INTERFACE CIRCUIT

[19]

[20]

[21]

[22]

[23]

[24]

[25]

to improve cortical neuron recordings from microelectrode arrays,” J.
Neurophysiol., vol. 101, no. 3, pp. 1679—-1689, 2009.

K. J. Miller, S. Zanos, E. E. Fetz, M. den Nijs, and J. G. Ojemann,
“Decoupling the cortical power spectrum reveals real-time representation
of individual finger movements in humans,” J. Neurosci., vol. 29, no. 10,
pp. 3132-3137, Mar. 2009.

C. A. Chestek et al., “Hand posture classification using electrocorticog-
raphy signals in the gamma band over human sensorimotor brain areas,”
J. Neural Eng., vol. 10, no. 2, pp. 1-11, Apr. 2013.

F. M. Yaul and A. P. Chandrakasan, “A 10 b 0.6 nW SAR ADC with data-
dependent energy savings using LSB-first successive approximation,”
IEEE J. Solid-State Circuits, vol. 57, no. 12, pp. 198-199, 2014.

V. Hariprasath, J. Guerber, S.-H. Lee, and U.-K. Moon, “Merged capaci-
tor switching based SAR ADC with highest switching energy-efficiency,”
Electron. Lett., vol. 46, no. 9, p. 620, 2010.

W. M. Chen et al., “A fully integrated 8-channel closed-loop neural-
prosthetic CMOS SoC for real-time epileptic seizure control,” IEEE J.
Solid-State Circuits, vol. 49, no. 1, pp. 232-247, Jan. 2014.

Y. Zhang et al., “A batteryless 19 uW MICS/ISM-band energy harvest-
ing body sensor node SoC for ExG applications,” IEEE J. Solid-State
Circuits, vol. 48, no. 1, pp. 199-213, Jan. 2013.

R. Muller et al., “A minimally invasive 64-channel wireless LtECoG
implant,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 344-359, Jan.
2015.

Adam E. Mendrela (S’11) received the B.S. degree
in electrical and computer engineering from Cornell
University, Ithaca, NY, USA, in 2012, and the M.S.
degree in electrical engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2014, where
he is currently pursuing the Ph.D. degree in electrical
engineering.

His research interests include developing new IC
architectures for neural interfacing systems, mixed-
signal electronics, signal processing, and neural engi-
neering.

Jihyun Cho (S’11) received the B.S. and M.S.
degrees in electrical engineering from Yonsei
University, Seoul, South Korea, in 2005 and 2007,
respectively. He is currently pursuing the Ph.D.
degree in electrical engineering at the University of
Michigan, Ann Arbor, MI, USA.

From 2007 to 2010, he was a Lecturer with ROK
Air Force Academy, Cheongwon, South Korea. His
research interests include CMOS image sensor and
mixed-signal VLSI circuit design.

Jeffrey A. Fredenburg (S’08-M’15) received the
Ph.D. degree in Electrical Engineering from the
University of Michigan, Ann Arbor, MI, USA, in
2015.

He joined Movellus Circuits, Ann Arbor, MI, USA.

Vivek Nagaraj received the M.S. degree in cogni-
tive neuroscience and B.S. degree in biology from the
University of Texas at Dallas, Richardson, TX, USA,
in 2007 and 2011, respectively. He is currently pursu-
ing the Ph.D. degree in neuroscience at the University
of Minnesota, Minneapolis, MN, USA.

He is currently a Research Assistant with the
Netoff Lab, Biomedical Engineering, University of
Minnesota. His research interests include developing
closed-loop patient specific neuromodulation thera-
pies for epilepsy.

Theoden I. Netoff received the Ph.D. degree in
neuroscience from George Washington University,
Washington, DC, USA, in 2001.

He is currently an Associate Professor of
Biomedical Engineering with the University of
Minnesota, Minneapolis, MN, USA. His research
interests include developing new and optimizing
current therapeutic approaches for treatment of
Parkinson’s disease and epilepsy.

Michael P. Flynn (F’15) received the B.E. and
M.Eng.Sc. degrees from the University College Cork,
Cork, Ireland, in 1988 and 1990, respectively, and
the Ph.D. degree from Carnegie Mellon University,
Pittsburgh, PA, USA, in 1995, all in Electrical
Engineering.

From 1988 to 1991, he was with the National
Microelectronics Research Centre, Cork, Ireland.
From 1993 to 1995, he was with the National
Semiconductor, Santa Clara, CA, USA. From 1995
to 1997, he was a Member of Technical Staff with
Texas Instruments, Dallas, TX, USA. From 1997 to 2001, he was with Parthus
Technologies, Cork, Ireland. He joined the University of Michigan, Ann Arbor,
MI, USA, in 2001, and is currently a Professor. His research interests include
data conversion, RF circuits, serial transceivers, and biomedical systems.

Dr. Flynn is a 2008 Guggenheim Fellow. He received the 1992-1993 IEEE
Solid-State Circuits Predoctoral Fellowship. He was an Associate Editor of
the IEEE JOURNAL OF SOLID-STATE CIRCUITS (JSSC) and an Associate
Editor of the ITEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II. He
has served on the Technical Program Committees of the International Solid-
State Circuits Conference (ISSCC), the Symposium on VLSI Circuits, and
the Asian Solid-State Circuits Conference (ASSCC). He was a Distinguished
Lecturer of the IEEE Solid-State Circuits Society. He currently serves on the
Technical Program Committee of the European Solid-State Circuits Conference
(ESSCIRC). He is the Editor-in-Chief of the IEEE JOURNAL OF SOLID-STATE
CIRCUITS. He was the recipient of the 2011 Education Excellence Award and
the 2010 College of Engineering Ted Kennedy Family Team Excellence Award
from the College of Engineering, University of Michigan. He was also the recip-
ient of the 2005-2006 Outstanding Achievement Award from the Department
of Electrical Engineering and Computer Science, University of Michigan; and
the NSF Early Career Award in 2004.

Euisik Yoon received the B.S. and M.S. degrees
in electronics engineering from Seoul National
University, Seoul, South Korea, in 1982 and 1984,
respectively, and the Ph.D. degree in electrical engi-
neering from the University of Michigan, Ann Arbor,
MI, USA, in 1990.

From 1990 to 1994, he worked with the National
Semiconductor Corp., Santa Clara, CA, USA, where
he engaged in researching deep submicron CMOS
integration and advanced gate dielectrics. From 1994
to 1996, he was a Member of Technical Staff with
the Silicon Graphics Inc., Mountain View, CA, USA, where he worked on the
design of the MIPS microprocessor R4300i and the RCP 3-D graphic coproces-
sor. He took faculty positions with the Department of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST), Daejon, South
Korea (1996-2005), and with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN, USA (2005-2008),
respectively. During the academic year of 2000-2001, he was a Visiting Faculty
at Agilent Laboratory, Palo Alto, CA, USA. In 2008, he joined the Department
of Electrical Engineering and Computer Science, University of Michigan,
where he is currently a Professor and the Director of Lurie Nanofabrication
Facility and the Director of NSF International Program for the Advancement
of Neurotechnology (IPAN). His research interests include MEMS, integrated
microsystems, and VLSI circuit design.

Dr. Yoon has served on various Technical Program Committees including
the Microprocesses and Nanotechnology Conference (1998), the International
Sensor Conference (2001), the IEEE Asia-Pacific Conference on Advanced
System Integrated Circuits (2001-2002), the International Conference on Solid-
State Sensors, Actuators, and Microsystems (Transducers) (2003 and 2005),
the IEEE International Electron Device Meeting (2006-2008), and the IEEE
International Conference on Micro Electro Mechanical Systems (2006, 2009—
2010). He also served on the IEEE International Solid-State Circuit Conference
Program Committee (2003-2007) and was a General Chair of the International
Symposium on Bio Micro and Nanosystems (2005).



