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Abstract— A prototype compressed sensing radar processor
boosts the accuracy of target range and velocity estimations
by over 6x compared with conventional processing techniques.
The prototype numerically solves basis pursuit denoising with a
biologically plausible spiking neural network. A unique form
of weight compression allows on-chip storage of all weights
for the large fully connected network. Capable of producing
over 200000 range-velocity scene reconstructions per second,
the prototype improves throughput by 8x and efficiency by
18x over the state of the art.
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circuits, Doppler radar, radar detection, radar signal processing.

I. INTRODUCTION

N ORDER to maximize resolution, performance-critical

radar systems are forced by the Shannon—Nyquist sampling
theorem to adopt such high sampling rates and correspond-
ingly high-power transceivers that the issue of data collection,
transmission, and storage can become the primary obstacle
for system design [1]. State-of-the-art radar systems employ
high-frequency transceivers to achieve required precision [2].
Recent work has focused on integrating radar transceivers
into small form factors such as those in mobile devices or
small appliances, with applications such as vital sign detection,
range finding, or indoor positioning [3]-[7]. Interestingly,
the design space for such devices is bottlenecked not only
by the computation necessary for signal processing but also
by the power required for sensing via wireless front ends, such
as those used for radar [8]. Front-end power inevitably then
becomes the foremost limiting factor in sensing resolution as
a consequence of the sampling theorem.

Because of this fundamental limitation and the imbalance
between power budgeted to sensing and signal processing, it is
usually desirable to enable a lower power transceiver, even if
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it is at the expense of increased computation. Recent work has
shown that radar images can be accurately reconstructed if they
are sufficiently sparse in a time—frequency basis, according to
the principles of compressed sensing (CS) [9].

This work introduces a prototype radar processor that oper-
ates on the principles of CS. In particular, it implements one
approach introduced by Herman and Strohmer [10] for CS
radar, which assumes a time—frequency target space quantized
into discrete atoms in both time and frequency dimensions.
The prototype solves the required sparse optimization with a
recurrent spiking neural network and exhibits several innova-
tions to address challenges in both enabling a large network
size and adapting the network to evolve with complex-valued
stimuli.

II. SPARSE APPROXIMATION WITH
A SPIKING NEURAL NETWORK

Given a signal x in some N-dimensional vector space,
sparse approximation seeks to represent x as a linear com-
bination of just a few atoms from a dictionary ® = {¢m}
(i.e., as a sparse coefficient vector y such that x & @y). Typ-
ically, ensuring sparsity requires the quantity of components
in the dictionary @ to be much larger than the dimension of
the signal x, i.e., M > N. Basis pursuit denoising (BPDN)
is an unconstrained optimization for sparsely approximating a
signal. Formally speaking, BPDN finds the solution y of

1
argmlnillx—®y||§+i||yn1« (M
y

By means of the parameter 4, (1) allows adjusting the approxi-
mation to favor either sparsity or reconstruction accuracy. Iter-
ative methods based on orthogonal matching pursuit (OMP)
[11] are among the most commonly used to solve BPDN.
As an approximate method, OMP can fail to recover signals
in certain contexts [12]. However, as BPDN solvers are both
difficult to implement and particularly expensive computation-
ally, OMP typically remains the preferred approach.

A. Competitive Evolution for Sparse Approximations

Rozell et al. [13] developed techniques to solve classes
of optimizations including BPDN, called locally competitive
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algorithms (LCAs). One such LCA can be derived by descend-
ing on the BPDN objective function

1
E(y) = 5llx = @yl + Ayl )
The gradient of this energy function is
dE dJ[1
— = —|=llx — ®yll5 + 2 3
5 dy[2||x Y3+ ||y||1} 3
=—@'x + ((DTCD)y + Asign(y). 4)

Define the nonlinear function 7,(y) by

T,(y) =y + Asign(y) ®)

which forces y to be at least A units away from zero. We
now search for the local minimum of the energy function by
descending on its gradient, which then produces an update rule
for temporally converging to a sparse representation y

dy dE
w4 (6)
t dy
=0'x — (®T® 1)y — y — Lsign(y) (7
=0'x —Ti(y)— (@T®-1)y. (8)
Without loss of generality, assume that |¢,, | = 1 for all ¢,, in

the dictionary @ (i.e., the vectors in @ are normalized), and
we can then express the update rule in (8) relative to some
individual component y,, of the sparse representation vector y

dym
dt

= ( m’x> - Tf»()’lﬂ) - z<¢k’ ¢m>yk~ 9)

k#m

The update rule in (9) illustrates that each component y,, in
the sparse representation y evolves according to three stimuli.

1) Primary Excitation: Each y,, is excited proportionally to
the similarity between (i.e., the magnitude of the inner
product of) its associated dictionary element ¢,, and the
input signal x.

2) Self-Inhibition: Each y,, inhibits itself according to its
own thresholded value 7, (y,;,) = v, + 4 sign(y,,). Here,
the effect of the sparsity tradeoff parameter A becomes
clear; when A is large, each y,, is driven to zero with
greater “force,” regardless of whether y,, is small.

3) Lateral Inhibition: Each vy, is inhibited by each of its
neighbors yi, k # m, proportionally to both the value of
vx and the similarity between their associated dictionary
elements ¢,, and ¢,.

It is the components’ last stimulus, lateral inhibition, which
produces the competition for which LCAs are named; since
each component of y inhibits all other components propor-
tionally to its own strength, every component competes with
all other components to produce nonzero values. Due to the
self-inhibition, however, only a select few manage to do so in
steady state.

m

B. Spiking LCA

Shapero et al. [14] converted the LCA to communicate both
excitatory and inhibitory signals with discrete spike events.
Known as the spiking LCA (S-LCA), the output of S-LCA is
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the steady-state spike rate of y, rather than y itself as in LCA.
In S-LCA, the update rule in (9) is modified to produce spikes
when the potential y,, exceeds a firing threshold

Vm(t) =0 and emit spike when vy, (t7) > 1 (10)

where ¢~ indicates a time immediately prior to . The remain-
ing dynamics for both self and lateral inhibition of y,, are
then adjusted to react to spike impulses rather than the prior
thresholded response T (y,,)

dyﬂl
dr :< m» >_/1_Z<¢k’¢m> z a(t_tkf) (11)
k#m ity <t
where a(t) is the unit exponential decay
0 t <0
apy={" "'~ (12)
e!, >0

which acts to low-pass filter the spike impulses, and #,
is the time of the {th spike of y;. The resulting network
has been shown to converge to the behavior of the LCA
asymptotically [14]. The differences between S-LCA and LCA
are summarized as follows.

1) The state variables y,, emit spike impulses and reset to
zero after crossing a firing threshold.

2) The output of the network is the spike emission rate,
not y directly. This also means that the output is strictly
nonnegative.

3) The self-inhibition is now constant with respect to y: 4
instead of T,(y).

4) The lateral inhibition is proportional to the low-pass
filtered spike stream from other neurons, instead of the
value of y itself.

It is in the final point that lies the primary advantage of
S-LCA over LCA when considering an implementation strat-
egy. In S-LCA, lateral inhibition between all pairs of y,, state
variables continuously changes, requiring on the order of M?
continually communicated values. On the other hand, S-LCA
only requires the communication of lateral inhibition stimuli
as a result of discrete spike events, which are likely sparse.

II1. RADAR PRELIMINARIES

Consider a monostatic (colocated transmitter and receiver)
pulse-Doppler radar system. The system transmits a pulse p(t)
that is reflected by N targets and received with a matched
filter as the combination of all target reflections r(f) =
Zflvzl r,(t). Each target-reflected pulse r, () is a time-delayed
and frequency-modulated version of p(¢) according to the
range and radial velocity of the target relative to the trans-
mitter, that is,

ra(t) = e p(t — 1)

where 7, = 2d/c (for a target range d) and f, = —2fyv/c
(for a carrier frequency fj and a target radial velocity v < ¢)
are the time delay and Doppler shift of the pulse reflection,
respectively. Classical radar processing correlates the com-
bined reflections r(¢) with the transmitted pulse p(f) via the

13)

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 02,2020 at 03:43:33 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BROWN et al.: 17.8-MS/s CS RADAR ACCELERATOR USING A SPIKING NEURAL NETWORK 3

Predicted via

Target Scene Cross-Ambiguity

!

: .

Range

Doppler
Doppler

Range

Fig. 1. Classical radar reconstruction of a target scene via cross ambiguity as
in (14), which can fail to distinguish targets in close time—frequency proximity.
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Fig. 1 shows an example of cross-ambiguity reconstruction
for a simulated target scene for a Gaussian pulse. The targets
clustered in the “center” of the scene are indistinguishable
from each other in the reconstruction. This reason for this
behavior can be understood from viewing the self-ambiguity
of the transmitted pulse (i.e., the cross ambiguity of the
pulse p(t) with itself). The support of this ambiguity function
describes the areas of uncertainty for range—Doppler estimates.
Fig. 2 compares the ambiguity functions for both a Gaussian
pulse (as used in the reconstruction in Fig. 1) and a cubic
sweeping pulse, which is less coherent. It can be shown that
this ambiguity function is volume-invariant for a pulse of given
duration and bandwidth [15], that is, assuming that the pulse
energy is normalized

[w|p(t>|2dr _1

[ee}

5)

the ambiguity function y,(z, v) achieves a maximum value at
xp(0,0) =1, and

o0 o0 ) 2
/ / |xp(z,v)| drdv = |2,(0,0)]
—00 J —o0

/ ()P di

indicating that the volume under the ambiguity function is
constant and independent of the pulse p(z). Together, (15)
and (17) imply that attempts to “squeeze” the region of
uncertainty about the origin (by adopting a more incoherent
pulse) will, by necessity, result in additional volume appearing
elsewhere (as shown in the ambiguity function for the cubic
pulse in Fig. 2). Thus, the only way to improve the estimation
uncertainty of ambiguity reconstructions is to increase the
energy of the pulse by increasing either its duration or its
bandwidth, and unfortunately both of these measures necessi-
tate an increase in transceiver power. It is desirable to instead
reduce uncertainty at the cost of increased data processing,
as computation is far cheaper than transmission, and this is
the motivation behind CS.

(16)

2
=1

A7)

IV. COMPRESSED SENSING RADAR

Donoho’s 2004 landmark paper [16] on CS ignited a new
field in signal processing. CS techniques promise accurate
signal reconstruction with sampling rates lower than those
normally demanded by the Nyquist-Shannon sampling the-
orem, if certain system properties (in particular, sparsity in
some basis) are known. Within four years, CS techniques were
proposed as an alternative estimation technique to the matched
filter of traditional radar processing, such as that introduced
by Herman and Strohmer [10]

A. Formal Description

The CS radar implemented in this work uses the BPDN
¢, minimization problem to recover a sparse set of targets
in range—Doppler space. For this approach, the basis for the
sparse approximation is a Gabor frame (set of time delays and
frequency shifts) for the transmitted pulse f; for a basis of
N time shifts and N frequency modulations, ® is an N x N?

dictionary of N-length vectors ¢,, indexed! as ® = {d)n}fl\zgl,
where
K 0 1
1 0 0
r=(0 1 0 (18)
L 0 1 0
[0} 0 0
0 a)}\, 0
M = . (19)
L0 0 .- w/’:/’—l
¢n = M" mod NTLn/Njf (20)

IFor ease of notation throughout this section, all matrices and vectors are
zero-indexed.
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Fig. 3. Classical radar estimations either experience prohibitive interference
or avoid interference but cannot identify nearby targets. CS radar’s sparse
estimations remain precise while avoiding interference.

and oy = e?™/N, the Nth root of unity [10]. In [10],

the chosen pulse is based on the Alltop sequence [17], denoted
f =10 where

1 in?
627rm /N

JN

for N > 5 prime. This sparse approximation results in a
natural filtering of interference that might otherwise result
from a highly concentrated ambiguity function. Fig. 3 shows
a comparison with traditional radar processing with both
Gaussian and Alltop pulses and CS radar with the Alltop
pulse. While traditional radar suffers either from imprecise
estimation (Gaussian) or prohibitively high interference (All-
top), the CS radar approach is able to isolate the original
target vectors without interference. Specifically, for N given
as above, CS radar produces an increase in target resolution

of 1/+/N [10].

Ja= 21
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B. Weight Compression

Due to the required amount of data movement, efficiently
realizing the inhibitory connections between neurons is a
significant challenge, one that has historically limited the
number of neurons in hardware LCA networks [18]. The
total number of neurons required to implement S-LCA for
CS radar is N2, associated with combinations of N time
shifts and N frequency modulations. Implementing the full
complete set of lateral inhibitory connections would then
normally require N> x N> = N* weights, an intractable
number. However, analyzing the structure of ®*® (where [-]*
denotes the Hermitian transpose) reveals a method of weight
compression. Note that @ can then be expressed as

o=[2" o V1] (22)
where the N x N submatrices ®") are defined as
®" =D,Wy (23)

where D,, are the n time-shift matrix operators applied to the
pulse sequence f

fa 0 o0
0 farr -+ 0
D,=] . . : (24
0 0 Jn-1
and Wy contains all combinations of frequency shifts
o o - o
6()0 a)l e a)N71
N—1 N N
W= o= | | @
o wx_l cuI(\,N_l)2

Now, when considering their construction from the Alltop
sequence f defined in (21), any two submatrices ®™ and
®™ for m # n have the property that, for any 0 < j, k < N,
with ¢§m) denoting the jth column vector of the mth N x N
submatrix @, the cross correlation between ¢§m) and ¢,((")
is of constant magnitude

N—-1

(07,80} = | 22 (A femmoa ) (@4 fronmoa )| 26)
=0
= (k—j+3n=3m>) (+3(m—n) >
=—|> oy 27)

The summation is in the form of a quadratic Gauss sum and
will thus always have magnitude /N

1
=SVN = (28)

1
N
The fact that the resulting magnitudes in (28) are constant is
a compelling incentive for adopting the Alltop sequence from
(21). It also provides a crucial behavior that eventually enables
weight compression, allowing the large network size required
by CS radar to be practically realizable. Now, using (22) to
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develop an expression of the N? x N? matrix ®*®, its structure
can be analyzed in terms of the N x N submatrices ®©*®/)

r @O
PD*
P = (2@ o® e™-D] (29
q,(l\;—l)*
r ®O*xpO PO*xgWN-D
d*p©® dDxeV-1)
= , ) . (30
q,(N—l.)*q)((]) q)(N—l)ﬂ:q)(N—l)

Consider the structure of a single submatrix ®®*@®\).

From (23), we have that element (p,q) of the submatrix

@*o) will be
(@D*@)) = (D;Wy)*D;Wy)

= (WyD;D;Wy)

€19
(32)

prq prq

rq’
The product D} D ;j is diagonal and, from (28), of constant

magnitude 1/N. Define ¢, as (D;D;),,, the kth element of
the product’s diagonal

kk>

=

-1
(g—p)k
Wy .

(43 (33)

k

Il
=)

Note that (33) depends only on the expression (¢ — p) mod N.
This implies that the values along all wrapped forward diag-
onals of each ®V*®{) sybmatrix are constant, which means
that only a single row or column needs to be stored for each
submatrix. This reduces the weight storage requirement for all
submatrices from N2 to N and the total weight storage from
N* to N3. However, additional logic is required for weight
access to shift the weights back to the appropriate row or
column; a variable rotator, operating on the requested weight
row or column index, is enough for decompression.

C. Adapting S-LCA Dynamics to Complex Numbers

CS radar operates on digitized pulse reflections, which
are transmitted and received through a front end as I/Q
real/imaginary values. As S-LCA is by nature limited to solv-
ing sparse approximations with unsigned component solutions,
it must therefore be adapted to allow for optimization under
the complex numbers before it can be used for reconstructing
range—Doppler estimations for CS radar. Two steps are nec-
essary for this transition: adapting S-LCA to produce signed
values and extending S-LCA to optimize under the complex
numbers.

Prior works have typically doubled the number of neurons
in a network to enable signed operation, allocating half of the
network to positive evolution and half to negative [19], [20].
Alternatively, adapting S-LCA to produce signed values can
be accomplished by modifying the neurons’ spike emissions
to be polarized. A negative spiking threshold is added to the
dynamics described by (10) so that neurons emit polarized
spikes. Each spike then carries an additional bit of polarity
information to indicate whether it was emitted as a result
of breaking the positive or negative threshold. This approach

avoids the cost of doubling the network size (and correspond-
ingly quadrupling the number of lateral weights) as in prior
approaches. To our knowledge, this approach had never been
put to practical use but has been hinted as a possibility [21].

After enabling signed dynamics, the next required step is to
extend S-LCA to optimize under the complex numbers. This is
accomplished by transforming the problem into a real-valued
optimization. Each complex-valued input associates with two
real-valued inputs, one each for real and imaginary com-
ponents, which doubles the number of feedforward weights
elements in ® from (22). The extended ®, denoted Py,

is defined as
& — real(®)
< imag(®) |

Thus, the dimensions of @,y are 2N x N2, doubled from those
of ® at N x N2. However, despite doubling the quantity of
weights stored, the total feedforward weight storage required
remains unchanged because the number of components in each
weight is simultaneously halved (one for real values instead of
two for complex values). In addition, the lateral weight storage
requirement remains unchanged, as the dimensions and type
of ® @, remain the same at N> x N2 real values (that
is, the conversion does not increase the number of neurons).
However, it must be shown that the weight compression
property presented in Section IV-B still holds when the above
extended ®.,, is used to construct a new lateral weight matrix
®! ®.y. This is evident from a straightforward extension of
the fact that for any complex number z = a + bi, we have
that 7z = a®+b?, which means that the lateral weights remain
unchanged, that is,

(34)

®] By = [real(®) imag(®)] [iﬁzlg(z)} (35)
= real(®") real(®) + imag(<I>T) imag(®) (36)
— *® (37)

as desired. Thus, S-LCA can emulate evolving over the
complex numbers without sacrificing the beneficial properties
gained from the Alltop sequence.

V. HARDWARE IMPLEMENTATION

In practice, rather than attempt exact BPDN optimization,
implementations instead substitute iterative greedy methods,
such as OMP [22] and greedy gradient or coordinate descent
[23]. These approximations to BPDN enable realizable hard-
ware implementations but do not always produce optimal
solutions [24]. This work demonstrates the first hardware
neural network BPDN solver for CS radar. Leveraging highly
parallelized neuron computation and synapse weight storage
optimization, the solver simultaneously improves processing
throughput by more than 8 x and efficiency by more than 18x
over existing hardware efforts [18], [22], [23]. The prototype
employs a time—frequency resolution of N = 41, resulting in
a resolution improvement of v/41 &~ 6x over traditional radar.

The immediate issue concerning the implementation is the
storage and distribution of the weights representing interneu-
ron inhibitory connections. As the prototype S-LCA optimizer
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Fig. 4.  Hierarchical summary of final implemented CS radar processor

prototype architecture, showing the synchronization (“halting”) bus, uni-
fied memory interface, weight compression (variable rotator), and hybrid
RAM/ROM image selection.

employs a grid quantization of N = 41, S-LCA optimization
involves the simultaneous evolution of a total of N> = 1681
neurons. Normally, this fully connected layer would require
the storage and distribution of N2 x N? = 2.8 million
inhibitory weights, but as a result of weight compression,
only N3 =~ 69 thousand weights need to be stored, with
minimal additional weight retrieval logic (see Section I'V-B).
The weights for the entire network (including 2 x N? ~ 138
thousand input layer connections) can then fit inside less than
1 Mbit of compact ROM.

A summary of the realized structure of the accelerator
is presented in Fig. 4. This section discusses some of the
challenges experienced and the techniques used to overcome
them.

A. Dual-Phase Operation

Feedforward excitatory connections from input nodes must
be distributed to neurons as the network evolves. The strength
of each connection is proportional to a vector dot product of
the pulse reflection and a time—frequency shifted pulse. As this
product is constant for a given optimization, the network
divides each optimization into two phases, as shown in Fig. 5,
which illustrates the implementation of a leaky integrate-and-
fire (LIF) neuron with dual-phase operation.

1) Precompute and store the excitation factor for each

neuron.

2) Excite the neurons using their stored excitation values

and allow the competitive network to evolve to steady
state.

B. Simultaneous Spike Events

Any of the 1681 neurons can potentially spike within any
iteration during network evolution, necessitating some means
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Fig. 5. Functional diagram of a dual-phase, dual-polarity LIF neuron for CS
radar.
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Fig. 6. Logic for encoding simultaneous spike events.

of efficiently detecting, encoding, and ordering spike events.
To reduce bus collisions, each column of the neuron grid has
its own spike bus with an attached priority encoder, as shown
in Fig. 6. The priority encoder records only one spike and
discards the rest. While this decision, in the case of this
prototype, has minimal impact on network evolution due to
the unlikelihood of more than one simultaneous spike within
the same column, future work could incorporate a buffering
scheme instead of prioritization for maximal synaptic integrity.
Each priority encoder then reports the identifier of the spiking
neuron to a common spike address event (AE) FIFO, which
buffers a limited number of spike AEs. The FIFO then reports
one spike AE at a time to both the spike records and the lateral
weight retrieval module. The spike records maintain a history
of all neurons that spiked during the evolution. After the
network evolves to steady state, this information then directly
indicates the time—frequency offsets in the received signal.
Lateral weight retrieval involves fetching and decompressing
(by means of a variable rotator, as described in Section IV-B)
the lateral weights associated with the spiking neuron from
ROM and distributing them to all neurons in the grid.
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Fig. 7. Watchdog module tracks spike processing and distributes a halting
signal to the neuron grid to synchronize evolution with spike propagation.
This has the effect of functionally eliminating spike propagation delay.

C. Synchronization Bus

Timely and deterministic synaptic response between neu-
rons is enabled in the fully connected layer with a synchro-
nization bus to control network halt. This ensures that the
neurons evolve as though inhibited instantly, which improves
the determinism of the network evolution and functionally
eliminates delays associated with weight retrieval and routing
logic (see Fig. 7). The synchronization bus is governed by
a watchdog module that tracks both the contents of the spike
AE FIFO and the current fetching progress from lateral weight
ROM banks. The network remains halted until all outstanding
spike AEs have been processed and all inhibitory weights
distributed to the network.

The increased determinism resulting from synchronization
allows both shortening the inference duration by more than
4x and minimizing the computational precision of neuron
dynamics by approximately 30%. Fig. 8 shows a comparison
of reconstruction error for two networks, one with a synchro-
nization bus and one without, as they evolve to a particular
solution, demonstrating that the synchronized network con-
verges much more quickly than the unsynchronized network.
Furthermore, synchronization allowed for effective evolution
even with low arithmetic precision; both neuron feedforward
weights and interneuron inhibitory weights require only 4-bit
precision to achieve acceptable accuracy, while neuron poten-
tial and filtered inhibition are stored with 12- and 11-bit
precision, respectively.

D. Weight Memory Layout

As described in Section V-A, the network operates
in two phases: excitation precomputation and competitive

Effect of Synchronization Bus on Convergence
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Fig. 8. Network synchronization enables much faster solution convergence.

(i.e., inhibitory) evolution to steady state. In both phases,
access to weight memory is mutually exclusive. While precom-
puting neurons’ excitatory magnitudes, the network fetches
image samples and feedforward weights. During competitive
evolution, neuron spike events trigger lateral weight retrieval
and distribution. Because both feedforward and lateral weights
are never accessed simultaneously (excitation does not require
lateral weights and inhibitory evolution does not require feed-
forward weights), they are stored in the same ROM banks,
saving periphery area.

Pulse reflections are stored in a single SRAM bank. In addi-
tion, a ROM bank of predefined reflections exists for debug-
ging purposes and can be selected at runtime. These image
memory banks contain 1024 words of 82 bits each, requiring
four read operations to fetch the 82 4-bit samples of a given
reflection and allowing up to 256 reflections to be programmed
at a time.

During the first phase, each sample of the loaded pulse
reflection must be multiplied by the corresponding 4-bit feed-
forward weight for each of the 1681 neurons, which requires
fetching a total of 6724 bits from the weight ROM. To balance
between cycle time and cell area, the weight ROM banks have
a word size of 160 bits, and 11 banks operate in parallel. This
allows for a total of 1760 bits to be fetched each cycle so that
the full 6724 bits can be fetched in four cycles. As a result, this
memory access strategy fixes the duration of the first phase at
1024 cycles.

During the second phase, as the lateral weights are stored
with the same precision (4 bits) as the feedforward weights,
the same ROM banks are reused to store those weights for
each combination of neuron and time delay. When a neuron
spikes during network evolution, 1681 4-bit weights, again for
a total of 6724 bits, are fetched, decompressed, and distributed
with the same four-cycle access strategy.

VI. MEASUREMENT RESULTS

Fabricated in 16-nm FinFET CMOS, the prototype die
micrograph and summary are shown in Fig. 9. To evaluate
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Technology 16nm FinFET
Core Area 0.6 mm?
Memory RAM: 84 Kbit
ROM: 985 Kbit
Nominal Frequency 500 MHz
Power Consumption 3.6 to 278 mW
Throughput 17.8 Msamples/s
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Fig. 9. Die photograph and summary table of CS radar processor prototype.
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Fig. 10.  CS radar processor prototype measured power consumption and

computational efficiency.

the prototype processor, a test computer communicated read
and write requests to a field-programmable gate array (FPGA),
which provided to the prototype both signaling for the memory
interface (all registers and RAM are mapped to memory
addresses) and the core clock signal.

Simulated reflections received by a monostatic radar system
in an environment with moving targets are digitized under
varying noise conditions and provided to the protoype as
I/Q values, as if produced by an analog front end and
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Identification Rate vs.
Received SNR and Sparsity
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Fig. 11. CS radar processor prototype measured identification rate for varying
target sparsity and pulse reflection SNR.

TABLE I
COMPARISON WITH STATE-OF-THE-ART CS PROCESSORS

Design ISSCC ’15 [22] | ISSCC ’18 [23]

Technology 40nm 40nm 16nm FinFET
Application Biomedical Biomedical Radar
Algorithm OMP, K-OMP SE-SP S-LCA
Dictionary up to 1024 up to 2048 1681

size

Measurement up to 512 up to 512 82

dim.

Core Area 5.13 3.061 0.6
(mm?)

On-chip 1176 6144 + 1536 985 + 84
memory (Kb)

Power (mW) 8.6 to 78 21.8 to 93 3.57 to 278
Clock (MHz) 27.4 67.5 20 to 500
Throughput 0.012 to 0.237 0.232 to 1.996 | 0.714 to 17.85
(MS/s)?

Efficiency 2114 43.84 2.54
FoM3

Efficiency 36.4 7.50 2.54
FoM scaled®

1Does not include 768 KB of on-chip memory.

2Measured at minimum energy point, normalized by dictionary size
for the optimization. Dictionary size is [22] 256 and [23] 384.

3For fair comparison between optimizing for different dictionary
sizes, equivalent to pJ/(sample - signal dimension). Lower is better.
4Best FoM taken from tests at minimum energy point.

5Accounts for expected energy scaling at given process node (all
scaled to 16nm). [25]

analog-to-digital converter. The prototype then processes the
reflection and produces estimates of distance and radial veloc-
ities for all identified targets.

Fig. 10 shows a summary of measured computational effi-
ciency. The top graph shows the total power consumption
over a standard range of operating frequencies; the prototype
consumes 3.57 mW at 20 MHz and 278 mW at 500 MHz.
The bottom graph identifies the computational efficiency for
the same range of operating frequencies, where efficiency is
measured via a figure of merit defined as the energy consumed
to process a single input sample, normalized by the “signal
dimension” for the processor. Within the context of sparse
approximation problems, the signal dimension is the number
of elements in the dictionary of atoms. This normalizing factor
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is added to more accurately compare against other sparse
approximation accelerators, as most algorithms for solving
the required optimization (greedy or otherwise) increase at
least linearly in runtime with the signal dimension. For this
prototype, the minimum energy point occurs at an operating
frequency of 40 MHz.

To evaluate target identification performance, the prototype
is given a digital representation of a received radar pulse with
a given SNR. As shown in Fig. 11, when the targets are
sufficiently sparse, the processor locates more than 99% of
all targets even at low-to-moderate SNR conditions.

Table T shows a comparison with prior state-of-the-art
approaches in CS hardware.

VII. CONCLUSION

This work demonstrates the first CS radar processor with
a non-greedy sparse optimizer, enabling radar applications
to leverage the greater accuracy of CS to reduce front-end
power requirements and making ultra-low-power smart-home
and mobile radar sensors realizable. The optimizer combines
S-LCA, a biologically inspired spiking neural network model,
with a novel weight compression scheme in an architectural
approach that enables both high efficiency and low-latency
processing. The prototype operates at up to 500 MHz and
218k estimates per second, with a peak efficiency of 2.4 pJ per
sample per dictionary atom, demonstrating a sample through-
put improvement of more than 8 x and efficiency of more than
18x over prior work [22], [23].
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