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A Low-Power Compressive Sampling Time-Based
Analog-to-Digital Converter

Praveen K. Yenduri, Aaron Z. Rocca, Aswin S. Rao, Shahrzad Naraghi, Michael P. Flynn, and Anna C. Gilbert

Abstract—This paper presents a low-power, time-based, com-
pressive sampling architecture for analog-to-digital conversion. A
random pulse-position-modulation (PPM) analog-to-digital con-
version (ADC) architecture is proposed. A prototype 9-bit random
PPMADC incorporating a pseudo-random sampling scheme is im-
plemented as proof of concept. This approach leverages the energy
efficiency of time-based processing. The use of sampling techniques
that exploit signal compressibility leads to further improvements
in efficiency. The random PPM (pulse-position-modulation) ADC
employs compressive sampling techniques to efficiently sample at
sub-Nyquist rates. The sub-sampled signal is recovered using a
reconstruction algorithm, which is tailored for practical hardware
implementation. We develop a theoretical analysis of the hardware
architecture and the reconstruction algorithm. Measurements of
a prototype random PPM ADC and simulation, demonstrate this
theory. The prototype successfully demonstrates a 90% reduction
in sampling rate compared to the Nyquist rate for input signals
that are 3% sparse in frequency domain.

Index Terms—Analog-to-digital conversion (ADC), compressive
sampling (CS), low-power ADC, time-based ADC, time-to-digital
converters.

I. INTRODUCTION

A PPLICATIONS of low-power analog-to-digital con-
version (ADC) include power constrained wireless

environmental sensing, high energy physics, and biomedical
applications such as massive-parallel access of neuron activity
([1]–[3]). We present a new low-power, compressive-sampling
analog-to-digital converter which we call a random pulse-po-
sition-modulation (PPM) ADC. This random PPM ADC is
one of the first ADCs that takes advantage of the combination
of time-based analog-to-digital conversion techniques and
compressive sampling. In addition, we discuss a new recon-
struction algorithm called PRSreco (periodic random sampling
reconstruction) and present theoretical upper-bounds for input
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signal reconstruction error. This algorithm is tailored to make
it viable for practical hardware implementation.
Technology scaling generally improves power consumption

and speed, however, it poses a number of challenges in the
design of ADCs. Scaling reduces the supply voltage, which
in turn reduces the signal dynamic range. This has the direct
effect of reducing the signal-to-noise ratio (SNR). One way to
overcome the challenges of low-voltage design is to process
signals in time domain. Technology scaling favors time domain
processing since it reduces gate delays and thus improves time
resolution. A wide variety of time-based ADCs that quantize
time or frequency instead of voltage or current, have been
proposed. These designs include simple architectures such as
single-slope analog-to-digital conversion [4], pulse width mod-
ulation (PWM) ADC [5], asynchronous level crossing designs
[6], voltage-controlled oscillator (VCO)-based modulators
[7], and integrate and fire circuits [8], [9]. Continuous time
DSPs are proposed in [10]. A continuous time level crossing
ADC, such as [11] and [12] can be attractive for slow moving
signals. However, the key advantages of these devices are lost
if continuous time DSP is not available. Furthermore, sparse
signals can be dominated by high-frequency content.
This work expands on the pulse position modulation ADC ar-

chitecture developed in [13]. The PPMADC is itself an elabora-
tion of the PWM architecture in which a continuous-time com-
parator compares the input to a periodic ramp, to convert the
input signal information to a time-domain representation (see
Section III). A two-step time-to-digital converter (TDC) then
converts the time domain information to digital domain. With
the use of a two-step TDC, the PPM ADC achieves both high
resolution and high dynamic range, along with low-power con-
sumption. Another way to obtain an improvement in the power
efficiency of an ADC is to reduce the sampling rate [14] since
to a first order, power consumption is proportional to sampling
frequency. We can achieve this by employing random sampling
techniques that exploit the redundancy (i.e., compressibility or
sparsity) of the input signal to reduce the sampling rates to
below the Nyquist rate. We implement random sampling by in-
troducing randomness into the reference ramp signal used by
the PPM ADC. The proposed random PPM ADC lies at the in-
tersection of time-based analog-to-digital conversion and com-
pressive-sampling to improve energy efficiency in both ways.
Many compressive sampling (CS) ADC architectures and ac-

quisition systems have been proposed in recent years. Some
designs lack efficient hardware implementation of encoding or
decoding (reconstruction) algorithms [15], [16]. Other designs
focus on efficient compression but do not optimize power con-
sumption [17], [18]. Some compressive sensing designs, such
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as [19], are based around conventional high-speed ADCs. Also,
none of the above designs exploit time-based conversion tech-
niques to reduce power consumption. The random PPM ADC,
thus occupies a unique position in the literature of compressive
sensing ADCs.
The remainder of the paper is organized as follows. Section II

briefly introduces compressive sampling and techniques that
reduce the number of measurements needed to store and re-
construct a given input signal. The PPM and random PPM
architectures are discussed in Section III. In contrast to [20], in
which we present a mathematical model for random PPM, in
this paper, we also discuss the motivation for and the design of
the randomized ADC. A prototype random ADC, implemented
as a custom complementary metal–oxide–semiconductor
(CMOS) PPM ADC coupled to an field-programmable gate
array (FPGA) is described. The hardware implementation of
the random PPM ADC is described in Section IV. The problem
of reconstructing the input signal from ADC output samples is
introduced in Section V. In Section VI, we discuss the PRSreco
algorithm for the recovery of input signals that satisfy the
signal model presented in Section V-A. This algorithm falls
under the general category of greedy pursuit methods that aim
to minimize the norm of the reconstruction error, subject to the
sparsity conditions of the input signal. The PRSreco is analyzed
in Section VI-A. The error bound of the recovered signal is
discussed in Section VI-A. Unlike [20], this paper contains
a complete and detailed theoretical analysis of the hardware
system and the algorithm. Appendixes A–E contain details
about the mathematical modeling of the randomized sampling
system along with lemmas and theorems that provide proof of
correctness and run-time details of the algorithm.
The PRSreco algorithm can also be used for signal recon-

struction in other randomized time based ADCs as the analysis
in Section VI-A is easily extended. The algorithm is tailored to
reduce computational cost and thus is viable for practical hard-
ware implementation. Our analysis along with the numerical
simulations and experimental results presented in Section VII,
show that a random sampling time-based ADC exhibits much
better performance than a nonrandom ADC operating at sub-
Nyquist sampling rates.

II. COMPRESSIVE SAMPLING

The basic idea of compressive sensing or compressive sam-
pling is to exploit redundancy (i.e., sparsity or compressibility)
in an input signal in order to reconstruct it from a small set
of observations. In other words, compressive sensing aims for
“smart” sampling of signals to acquire only the “important” in-
formation. In this way, the signal sampling rate can be reduced
from the Nyquist rate (i.e., twice the bandwidth) to a rate that is
proportional to the actual amount of information present in the
signal.
Let the signal of interest be represented by a vector of length
. We say that is sparse if it contains only a few nonzero com-

ponents compared to the total length ( ) of the signal. A com-
pressible signal is one that is reasonably well approximated as
a sparse signal. Let a vector represent linear measure-
ments taken from by the measurement system. The matrix,
, is called the measurement matrix and has a size ,

where the number of measurements . The reduction
in the number of measurements that can be tolerated is propor-
tional to the sparsity of the input signal . The problem of re-
covering the signal can be cast as that of solving an under-de-
termined system of equations . Solving for based on
is an ill-posed problem in general; however, it is possible to

do so under the assumption that the input signal is sparse or
compressible.
The assumption of sparsity is justified by the fact that real

world signals are often sparse or compressible in some trans-
form domain. For example, communication signals such as fre-
quency shift keying (FSK) are sparse in the Fourier domain and
natural images are often sparse in a wavelet domain. In other
words, even if the input signal is not sparse, it can be repre-
sented as for some sparse vector , where de-
notes the sparsifying transform matrix. The net measurement
matrix now changes to for the system . In
this paper, we assume that the input signal is sparse in the fre-
quency (Fourier) domain. Hence, is the DFT of and is
the inverse discrete Fourier transform (IDFT)matrix. The sparse
spectrum can be expressed as the solution to the following
optimization problem1 [21]:

The above problem requires the solution of a nonconvex
combinatorial problem, which is not practical [22]. Hence, the
-“norm” in the objective function is often replaced by its

convex relaxation, the -norm2. That is

It has been shown that if the measurement matrix satisfies the
restricted isometric property (RIP), then the sparse vector can
be recovered exactly [23]. A matrix is said to satisfy RIP with
parameters for , if for all -sparse3 vectors

There is no known algorithm that can verify if a given ma-
trix is RIP other than the exponential time brute force algo-
rithm. However, various results have been published about the
RIP nature of the matrix if it is drawn from certain distribu-
tions of random matrices. For example, in the cases where
is a random Gaussian matrix [24], a random Bernoulli matrix
[25] or a random partial DFT matrix [24], satisfies
with high probability, if the number of measurements

( refers to the Big-O notation [23]). Al-
gorithms that carry out the –minimization through linear pro-
gramming to find are typically referred to as the Basis Pursuit
(BP) algorithms. Many of the proposed CS ADCs ([15], [16],
[19]) use BP algorithms for reconstruction. However, BP algo-
rithms are challenging to implement in hardware and are usu-
ally significantly slower when compared to greedy pursuit al-
gorithms [26]–[28]. Greedy pursuit algorithms try to minimize

1 solves for that has the smallest -“norm,” where
is defined as the number of nonzero elements in .
2The -norm of a vector is defined as the sum of the absolute values of its

elements.
3An -sparse vector has at most nonzero elements.
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Fig. 1. Block diagram of the PPM ADC.

the -norm of the error (defined as ) subject to the con-
dition that is -sparse

Conventional greedy pursuit algorithms such as those proposed
in [27] and [28], require the matrix to be RIP. The measure-
ment matrix associated with the PPM ADC, does not neces-
sarily satisfy the RIP condition. If a newmatrix is constructed
randomly for each input signal , then the RIP condition on
can be relaxed [26], [29]. Hence, we impose the condition that
be a random matrix (newly constructed for each input signal
) and develop a new reconstruction algorithm, that falls under

the category of greedy pursuit algorithms, but does not require
matrix to be RIP.
In this paper, a “measurement” of the input signal is a mea-

surement of the amplitude of the input signal at some time point.
To obtain a random measurement matrix B, the input signal is
sampled at random time points. The measurement vector rep-
resents the amplitude of the signal at those random time points.
Random sampling can be broadly classified into two categories,
random on-grid sampling where the sampling time points lie on
a Nyquist grid and random off-grid sampling where the time
points are continuously distributed in an interval and do not
lie on a grid. Several fast sub-linear time algorithms can re-
cover -sparse signals from random on-grid samples [29]–[32].
These algorithms have a storage requirement and runtime of

(with the exception of [32], which samples the
signal uniformly at Nyquist rate). However, PPM ADC pro-
duces off-grid samples. A specific case of random off-grid sam-
pling is studied in [33] with a number of measurements,

, where is the dynamic range of and
is a tolerance parameter. In this paper, we deal with reconstruc-
tion from signal-dependent,4 random, off-grid samples. Thus,
the problem setting is different from [33], leading to an algo-
rithm that offers different error guarantees and different condi-
tions for recovery. We also take a nonconventional approach in
proving the error guarantees. Unlike the random on-grid sam-
pling techniques, our algorithm does not achieve a sub-linear
run-time.

III. HARDWARE DESIGN

In this section, we describe the PPM ADC architecture and
the design of the random PPM ADC design.

A. PPM ADC Architecture

A block diagram of the PPM ADC is shown in Fig. 1. The
sampling procedure [13] is depicted in Fig. 2. A comparator

4The time points at which the signal is sampled depend on the signal, in con-
trast to being completely deterministic or completely random.

Fig. 2. Waveforms depicting the sampling procedure in the PPM ADC.

continuously compares the input signal with a repeating refer-
ence ramp. An output pulse is generated by the comparator at the
time instants where the ramp voltage exceeds the input signal.
The time elapsed between the beginning of the ramp and the in-
stant the input signal crosses the ramp (i.e., as seen
in Fig. 2) is measured and quantized by a two-step 9-bit time to
digital converter (TDC). The simplest form of a TDC is a dig-
ital counter, however, to achieve a high resolution, one needs to
have a very high counter frequency which in turn leads to a large
energy consumption. On the other hand, delay line circuits [34]
are more energy efficient for time measurement, however, the
delay line must be long to measure long periods of time and can
suffer from nonlinearity. As a compromise, the two-step TDC
consists of a 5-bit counter which performs coarse quantization
and a delay line TDC as the fine quantizer that resolves 4-bits.
By combining a low frequency counter and a delay line TDC,
the two-step TDC thus achieves both energy efficiency and a
large dynamic range. Detailed implementation of the TDC is
discussed in [13]. The output of the ADC is a sequence of time
duration measurements , which represent the relative position
of the output pulse in every ramp period. Since the signal in-
formation is encoded into the position of the pulse, the ADC is
called pulse positionmodulationADC. The starting points of the
ramps are given by , where is the period of the
reference ramp signal. The crossover times are . If
we assume the slope of the ramp is a constant , the signal am-
plitude at the crossover times is . In this way, from the
output of the PPM ADC, we can calculate the sample set

. Note that is also the average sam-
pling period of the ADC, because the ADC takes one sample
within every interval of seconds.
1) Nonuniform Signal Dependent Sampling: If we make the

approximation that are samples at uniform time points in-
stead of the nonuniform , we see harmonic distortion in the
frequency spectrum of the recovered signal. Linear low-pass
filtering is a straightforward conventional technique for con-
structing uniform samples from nonuniformly sampled infor-
mation. According to [35] an oversampling factor of at least
8 is needed to use the traditional low pass filtering technique.
Another approach is to use a time-varying iterative nonlinear
reconstruction method, (as described in [13]) which allows the
signal to be sampled closer to the Nyquist rate (see Appendix A
for further details). The method still requires the sampling fre-
quency to be above the Nyquist rate (the oversampling factor of
8 is brought down to 2). Further, a sufficient condition of

is required to obtain a stable sampling set [36]. If this con-
dition is relaxed, there is no guarantee that the algorithm con-
verges. For sampling rates below the Nyquist rate, the method
diverges. Our goal is to convert the PPM ADC into a compres-
sive sampling ADC so that the signal can be recovered from
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Fig. 3. Histogram of correlation coefficients between different pairs of columns
of a signal dependent measurement matrix and a random measurement matrix
(of size 15 40). The -axis represents the number of correlation coefficients
that fall in any particular bin of coefficient values.

samples acquired at sub-Nyquist rate. The sampling system and
the reconstruction algorithm are co-designed to achieve this.
2) A Regular PPM ADC at Sub-Nyquist Sampling Rate: A

straight-forward way to operate a PPM ADC as a compressive
sampling ADC is to increase its average sampling period
(which is also the reference ramp period). The sampling fre-
quency can be brought down to a value , where
is the Nyquist frequency of the input signal. We refer to this
sampling architecture as the regular PPM ADC. We use the al-
gorithm proposed in Section VI for reconstruction. However,
since the time points (calculated in Section III-A) are non-
random and highly signal dependent, the resultant measurement
matrix is also nonrandom and thus disobeys the design rules
of random sampling algorithms. In order to fit into the compres-
sive sensing framework and to meet the criteria for successful
signal reconstruction, we need to make some modifications to
the PPM ADC sampling system. A random sampling scheme is
introduced in the next section.

B. Random PPM ADC Design

Simple theoretical results from sparse approximation state
that a low correlation between different columns of a measure-
ment matrix indicates the possibility of better signal recovery
[26]. Albeit crude, this is one of the elementary methods for
evaluating a measurement matrix with respect to its reconstruc-
tion properties. Consider the following simple experiment to
motivate the introduction of randomness into the PPMADC. Let
be the measurement matrix that relates the DFT of the input

signal to the samples obtained by the PPM ADC at sub-Nyquist
rate with an average sampling period of . As discussed, the
time points at which a signal is sampled by the PPM ADC are
signal dependent. Now let be the corresponding measure-
ment matrix, when in each interval of length , the
signal is sampled at a time point that is uniformly distributed
on 5. Ideally, we want any measurement matrix
to be orthonormal ( ) so that the input signal can

be easily recovered as . An orthonormal
matrix is characterized by a zero correlation between any two
columns of the matrix. Fig. 3 plots the histograms of correla-
tion coefficients between different columns, for both the signal
dependent and the random matrices. As can be seen
from the figure, in the case of a signal dependent several

5Note that in the actual implementation of the random PPM ADC, we do not
have complete control over , and so we randomize instead.

Fig. 4. Block diagram of the random PPM ADC also showing the building
blocks of TDC block.

columns have high correlation coefficients. On the other hand
for the random matrix , coefficients are all distributed in the
left region of the plot. Intuitively, since achieves closer to
zero correlation coefficients when compared to , it is more
“orthonormal” than and is expected to lead to a better signal
recovery.
Motivated by this observation, we introduce random-

ness into the PPM ADC system. We convert the ramp
starting times (which are deterministic in regular
PPM ADC) into random variables. More specifically, let

. That is, in each interval
of length , the reference ramp has a random

starting point this definition of as it is, may lead to overlap
between adjacent ramps. For example, there is an overlap when
both and are equal to . See Appendix B for further details
about how to avoid this. We call this architecture random PPM,
as the ramp starting times are now randomly and independently
chosen. As before, the crossover times are and the
signal amplitude at the crossover times is , where
is the slope of the ramp.

IV. RANDOM PPM ADC IMPLEMENTATION

Fig. 4 shows a block diagram of the random PPM ADC. The
individual blocks are explained in detail in the following sec-
tions. A random clock generator block produces two outputs, a
start signal (which goes high at each ) and a random clock.
The reference ramp is generated only when the start signal is
high. The comparator compares the output of the ramp generator
with the input signal and generates a stop signal when the ramp
voltage exceeds the input signal. The random clock acts as the
time reference in the time-to-digital conversion (TDC) block.
The two-step TDC (with a 5-bit coarse quantizer and a 4-bit fine
quantizer) measures the time elapsed between the rising edges
of the start and the stop signal. A synchronizer ensures correct
alignment of the coarse and the fine time measurements. The
ramp generator, comparator and the two-step TDC are imple-
mented in 90-nm digital CMOS, while the random clock gener-
ator is implemented on an FPGA.
Fig. 5 shows some of the key timing signals and provides a

comparison of operation between a regular PPM ADC and the
random PPM ADC. The regular PPM ADC receives a regular
periodic clock with period . The start signal of a regular
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Fig. 5. Timing signals and comparison of operation between a regular PPM
ADC and the random PPM ADC.

Fig. 6. Ramp generator which is a component of the ADC in [13].

PPM ADC goes high at the beginning of each repetition pe-
riod . On the other hand, the random PPM receives a random
clock, which consists of regular clock cycles only when the
start signal is high. The start signal for the random PPM ADC
goes high after a random time in each interval (of length
). The start signal remains high only for a time and then
goes low for the rest of the interval. The time is related to
the slope of the ramp such that the ramp covers the entire
voltage range of the input signal in a time . During the time

when the start is high, the ramp is gen-
erated and when it crosses the input signal, the random PPM
ADCmakes one measurement (denoted as in the figure). This
process repeats in every interval , .
Therefore, the average sampling frequency of the ADC is

.

A. Ramp Generator

The ramp generator circuit is shown in Fig. 6. Charging a ca-
pacitor with a constant current produces the ramp signal. Cas-
coded PMOS transistors M3 and M4 implement the current
source while M1 and M2 are the digital switches that control
capacitor charging. The switches are, in turn, controlled by the
start signal. The capacitor discharge is achieved simply with a
switch to ground [13].

Fig. 7. Schematic of the comparator, a component of the ADC in [13].

Fig. 8. Random start signal and random clock generation.

B. Comparator

The comparator is continuous time and is made up of two
stages. The circuit is shown in Fig. 7. The first stage is a differen-
tial to single amplifier with a PMOS input pair. This is followed
by an NMOS common source stage. The PMOS input pair oper-
ates in the sub-threshold region. This is done to minimize power
consumption and to provide a larger input common mode range,
which allows for a larger dynamic range in the ramp [13].

C. Random Clock and Start Generator

The random waiting times ’s (in Fig. 5) are pro-
duced using a linear feedback shift register (LFSR) system as
shown in Fig. 8. Although the output of this system is only
pseudo-random, with a large bit length sufficient randomness is
achieved. The LFSR bit string is initialized with a nonzero seed.
This bit string gives the number of regular clock cycles that the
start signal initially remains low, i.e., ,
where LFSR stands for the (integer) value of the bit string. The
start signal then goes high and stays high for a time (which
is chosen such that is greater than the input signal voltage
range; is also chosen to be a multiple of ). To complete
the interval of length , the start signal is kept low for an
additional seconds, as shown in Fig. 5. Once a
complete interval of length has elapsed, the LFSR sequence is
advanced to its next state and the same process is repeated with
the new value of LFSR (thus, a new ).
The random clock is produced by gating the start signal with
the regular clock, as shown in Fig. 8. The rising edges of start
and the random clock are thus synchronized. Note that two
short bit length LFSR systems can be coupled to produce a
pseudo-random sequence with sufficiently large period.
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D. Time-to-Digital Converter

The two-step TDC [13] measures the time interval ( in the
Fig. 5) between the rising edges of the start signal (which is syn-
chronous with the random clock), and the stop signal generated
by the comparator. To enable correct alignment of the coarse and
fine time measurements, the synchronizer block generates two
additional signals, clk_stop and counter_enable. The clk_stop
signal is set by the arrival of the second rising edge of the clock
after the stop signal. The counter_enable signal is set by start
and reset by clk_stop. A 5-bit counter (which is the coarse quan-
tizer) measures (in Fig. 5), which is the number of clock cy-
cles elapsed while the counter_enable signal is high. The slope
of the ramp is designed such that is always less than 32 clock
cycles. The fine TDC measures the time between the stop
signal and clk_stop signal rising edges. The overall TDC output
is . The fine TDC consists of a 32-element delay
line, spanning two full clock cycles (the fine TDC thus divides
one clock cycle into 16 equal slices and resolves 4 LSBs).

V. RECONSTRUCTION PROBLEM

We now formulate the problem of reconstructing the input
signal from samples collected by an ADC (regular PPM or
random PPM). The samples are assumed to be collected at a
sub-Nyquist rate. Let an -length vector represent the input
signal in the Fourier domain. Let ( ) be the number
of measurements taken by the ADC. Let ,
denote the measurements obtained from the output of ADC
(see Section III). The time is the th time point at which the
ADC samples the input signal and is the signal amplitude at
that time. Note that , where is the
average sampling frequency of the ADC and is the Nyquist
rate of the input signal. We relate the input signal with the
measurement vector through the equation , where
is the measurement matrix. The goal is to solve for from

. Note that is the -point DFT of the time domain
input signal . The reconstruction is done in the frequency
domain, as the input signal is assumed to be sparse in frequency
domain as indicated in the following input signal model.

A. Signal Model

In this paper we focus only on a subset of band limited sig-
nals that are band limited to . The Nyquist rate of the
input signal space is . If the input signal is sampled
at the Nyquist rate for a time of , then the number of sam-
ples . We assume that the input signal is -sparse
or -compressible in the frequency domain. A signal is called
-sparse in the frequency domain, if the DFT of the signal sam-
ples at Nyquist rate has only nonzero terms. A signal is called
-compressible6 in the frequency domain, if the sorted list of its
DFT coefficients has only significant or dominant terms, com-
pared to which the other terms are negligible. The input signal

6We call , -compressible, if it is well approximated as a -sparse signal,
for some constants and , where is the

-sparse signal that best approximates .

Fig. 9. Measurement matrix.

can be expressed as a linear combination of complex exponen-
tials as follows:

where , are the dominant frequencies which
lie in the interval and are the corresponding coef-
ficients. We further assume that the input signal is real, hence
is even and one set of frequencies is the negative of the other
set. Some practical signals that are frequency-sparse include fre-
quency-hopping communication signals, narrowband transmis-
sions with an unknown carrier frequency that can lie anywhere
in a wide band, communication to submarines, radar [37], and
geophysical [38] signals such as slowly varying chirps, etc.

B. Measurement Matrix

To determine whether a successful signal recovery is pos-
sible from , we analyze the properties of the mea-
surement matrix , which is shown in Fig. 9. The matrix
can be intuitively constructed by making the observation that if
is the only frequency with a nonzero coefficient in the DFT
, i.e., in time domain , then the sam-

ples of at time points are given by
. Putting (as in a -point IDFT),

the samples form the th column of the measurement matrix,
for (if even) or

(if odd). Hence, for a given and ,
. It is to be noted that is not a sub-ma-

trix of the -point IDFT matrix, since are nonuniform and
do not lie on any Nyquist grid.
We now look at the correlations between different columns of

the random PPM measurement matrix . Let
denote the correlation between the th and th columns of .
Lemma 1: Let (if even) or

(if odd). For and

(1)

See Appendix C for proof. The Lemma 1 provides a tight
upper-bound, on the order of , for the magnitude of ex-
pected correlation between different columns of . A small ex-
pected correlation implies a better signal recovery, as discussed
in Section III-B and illustrated in Fig. 3.
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TABLE I
PERIODIC RANDOM SAMPLING RECONSTRUCTION (PRSRECO) ALGORITHM

VI. RECONSTRUCTION ALGORITHM

The random PPM ADC samples the signal at a rate propor-
tional to its finite rate of innovation, defined as the number of
degrees of freedom per unit time [39]. For the signal model con-
sidered in this paper, the rate of innovation is given by , the
number of frequencies present in the signal. Algorithms have
been proposed in [39] that can recover the frequencies and
their coefficients by using only s consecutive uniform samples
from the signal. However, these algorithms cannot be applied
with the random PPM ADC as they require the samples to be
uniformly spaced at Nyquist rate. Also, the measurement ma-
trix associated with random PPMADC, is a signal-dependent
nonuniform random Fourier matrix, and as such, does not neces-
sarily satisfy the RIP assumed in [27] or the conditions assumed
in [28]. This leads to the need to develop different algorithms
with different theoretical analysis. A probabilistic approach is
presented in Section VI-A.
We call the developed reconstruction algorithm, Periodic

Random Sampling reconstruction (PRSreco). A pseudo-code
for the PRSreco algorithm is presented in Table I. From
Lemma 1, we see that correlations between different columns
of are small on average. Hence, is a good approxima-
tion to the signal . In particular, the largest components in

provide a good indication of the largest components in
. The algorithm applies this idea iteratively to reconstruct an

approximation to the signal . At each iteration, the current
approximation induces a residual, which is the part of the signal
that has not been approximated yet. The current approximation
vector is initialized to a zero vector and the residual is
initialized to the measurement vector . For a vector , supp( )
is defined as set of indices of the nonzero elements of and
stands for the best -term approximation7 of . For an index set

, stands for a sub-vector of containing
only those elements of that are indexed by . Similarly
stands for a sub-matrix of containing only the columns of
indexed by . The algorithm initially obtains an estimate for
the dominant frequencies in the signal through least squares
and then refines the estimate of the set of dominant frequencies
and their coefficients in an iterative fashion.

7The best -term approximation of a vector can be obtained by equating all
the elements of to zero, except the elements that have the top magnitudes.

The computationally intensive step of least squares is per-
formed only once in the PRSreco algorithm. The least squares
is implemented using the accelerated Richardson iteration [40]
with runtime of where is a tolerance pa-
rameter. The structure of the measurement matrix lends us to
use the inverse NUFFT [41] with cardinal B-spline interpola-
tion for forming the products of the form , in a runtime of

. Hence the total runtime of the algorithm is domi-
nated by where is the number of iterations.

A. Analysis of Algorithm

Lemma 2 says that the estimators of coefficients of in
the PRSreco algorithm produce close to correct values and
their second moments (variances) are bounded. The results of
Lemma 2 and Lemma 1 are used to prove Theorem 3.
Lemma 2: If number of measurements then for

any -sparse (or -compressible) vector , each estimate of the
form for , satisfies

(2)

(3)

See Appendix D for proof.
Once the PRSreco algorithm gets an approximation of ,

it subtracts the contribution of the current approximation from
the measurements and proceeds to recover the leftover signal

. As we move on to higher iterations of the algorithm,
the energy in the leftover signal goes down, bringing down the
upper-bound on the variance of the estimators (from Lemma 2
applied to ). Thus a better approximation is obtained
for the signal in each higher iteration until the required tol-
erance is reached or the algorithm converges. Please refer to
Appendix E for further details. Theorem 3 offers an error guar-
antee for a signal recovered using the PRSreco algorithm and
establishes the conditions on the sub-sampling ratio that
can be achieved using the random PPM ADC. If is -sparse
and there is no noise in the measurements obtained from the
random PPM ADC (operating at a sub-sampling ratio of ),
then from Theorem 3, signal can be recovered exactly. If the
measurements are corrupted by some noise (e.g., quantization
noise), the -norm of the reconstruction error is bounded above
by the -norm of the noise.
Theorem 3: Let be the time domain samples

of signal obtained by the random PPM ADC, where is an
arbitrary noise contamination in the measurements and is the
resultant measurement matrix of size . Let the phase8 of
the time domain input signal be uniformly distributed
in . Suppose for some
constant and a given sparsity parameter , where is
the magnitude of the th largest element of . Given the error
tolerance in reconstruction and , with

the algorithm produces an -term
estimate of signal with the following property

(4)

8That is, the time at which we start to observe the signal, is assumed to
be random. This induces a probability distribution on the signal dependent .
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where is the best -term approximation of .
The runtime of the algorithm is where

, with a gross upper bound of
. The net storage requirement

is . The constant depends on the mea-
surement matrix .
See Appendix E for proof.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

The regular PPM and the random PPM sampling architec-
tures (described in Section III), are implemented in hardware.
The ADCs, combined with the reconstruction algorithm are also
simulated in MATLAB. A series of experiments compares the
performance of the PRSreco algorithm for both the sampling ar-
chitectures. The signal-to-noise ratio9 (SNR), which is defined
as the ratio between the signal energy and the reconstruction
error, is used as the performance metric to evaluate the quality of
the reconstructed signal. MATLAB simulation results are pre-
sented first and are followed by the experimental results from
the hardware implementation.

A. Simulation Results

The finite time resolution of the TDC block in the ADC
induces some quantization into the measurements. For the sim-
ulation experiments to follow, the quantization is kept at 7 bits
( , for a ramp duration of 0.25 and

). This corresponds to a signal to quantization noise
ratio of about 44 dB for an input sinusoid.
1) Multitone Signals: In the first experiment, we reconstruct

multi-tone input signals, which are a linear combination of si-
nusoids. Each sinusoid has a random phase, comparable am-
plitude and its frequency is chosen randomly from the Nyquist
grid. The Nyquist frequency is 3 MHz whereas the sampling
frequency of the ADC is chosen to be 1 MHz, giving a sub-sam-
pling ratio of 0.33. That is, , where ( ) is
the number of measurements from the ADC and ( ) is
the length of input signal, . The input signal is corrupted by
additive white Gaussian noise with varying power, sampled by
the random PPM scheme and reconstructed using the PRSreco
algorithm. The performance of the algorithm is evaluated by
measuring the output SNR. The experiment uses the -term
Nyquist approximation as the benchmark performance, which
is defined as the SNR obtained when the signal is sampled at
Nyquist rate, quantized at the same quantization level as the
ADC and then truncated, in frequency domain, to keep only the
dominant terms. The -term Nyquist benchmark thus repre-

sents the best -term approximation to the signal in frequency
domain. Fig. 10(a) plots the mean (of 200 trials) reconstruction
output SNRs for signals with nine tones (corresponding

and ) and 17 tones ( and
).

The experiment demonstrates that the random PPM achieves
a close to the benchmark10 performance, owing to the good cor-
relation properties of the measurement matrix (Lemma 1). The

9 , where is the input signal and
is the output of the algorithm
10The benchmark considers the error in the amplitude of the tones due to

quantization and input noise

Fig. 10. (a) Mean output SNR versus input SNR and (b) success percentage
(fraction of trails that succeed) versus input SNR for 9-tone and 17-tone signals.
The -term NYQ (Nyquist) benchmark represents the best -term approxima-
tion to the signal in frequency domain. Success means the correct identification
of the frequencies of all tones.

random PPM performance approaches the benchmark as the
input SNR increases. Further more, as the number of tones in-
creases (making the signal less sparse), the random PPM output
SNR is unaffected relative to the benchmark.
The output SNR can be higher than the input SNR, as the

algorithm (like any other greedy pursuit algorithm) only calcu-
lates the coefficients of the top frequencies in the signal and
thus inherently filters out the noise at other frequencies. This
“denoising” effect decreases as the value of increases. This ex-
plains the degradation in output SNR (of even the benchmark)
when the number of tones is increased. After input SNR is high
enough, we see a saturation in the output SNR. This can be at-
tributed to the quantization noise in the measurements (which
also gets “denoised” to some extent).
Fig. 10(b) plots the percentage of trials that achieve success in

signal recovery. We call the reconstruction a success when the
frequencies of all the tones in the input signal are correctly iden-
tified. The plot also confirms that mean output SNR is a good
indicator of the quality of reconstruction, as it also captures (to
some extent) the information about the percentage of success.
2) Sub-Sampling Ratio: The next experiment reconstructs a

single tone signal (randomly chosen frequency, )
with varying number of measurements and noise levels. The
input signal is sampled by both the random PPM and the regular
PPM sampling schemes and reconstructed using the PRSreco al-
gorithm. The sub-sampling ratio is defined as the ratio between
the sampling rate of the ADC and the Nyquist rate of the signal
(which is twice the randomly chosen tone frequency), and can be
computed as . The sub-sampling ratio needed for at least
99% success (i.e., at least 99% of the total trials succeed in iden-
tifying the input signal frequencies correctly) is empirically de-
termined for each input SNR level and is plotted in Fig. 11(c).
We observe that at all SNR levels the random PPM ADC suc-
ceeds with far fewer measurements than the regular PPM. Fur-
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Fig. 11. Reconstruction of a single tone signal with varying number of mea-
surements (a) with no noise (b) success percentage when no noise (c) sampling
needed for 99% success, with noise.

Fig. 12. Mean output SNR versus random PPM ADC sampling rate, for fixed
bitrates of 4, 5, and 7 Mb/s.

ther, when the input SNR is high enough the sub-sampling ratio
needed for success in the random PPM quickly falls to about
3%. This can also be seen in the no-noise (i.e., only quantization
noise) case [Fig. 11(a) and (b)], where the regular PPM scheme
breaks downwhen the sampling rate goes below 20% ofNyquist
rate, whereas, the random scheme performs well enough for
sampling rates as low as 3% of the Nyquist rate, indicating much
better incoherence properties of the measurement matrix.
3) Resolution Versus Sampling Rate: In this experiment, we

fix the bit-rate of random PPMADC, that is the product of ADC
quantization (resolution) and its sampling rate. For example, a
bit-rate of 5 Mb/s can be achieved by choosing an ADC quanti-
zation of 5 bits and a sampling rate of 1 MHz. Fig. 12 displays
the constant bitrate curves for bitrate values of , and 7 Mb/s
for a random 11-tone input signal with input SNR of 15 dB.
Each curve plots the mean output SNR for varying sampling
rate. A low sampling rate corresponds to high ADC resolution
and vice-versa (since the bitrate is fixed for each curve). If the
sampling rate is too low, resulting in a lack of enough measure-
ments, the reconstruction error increases, degrading the output
SNR. If the sampling rate is too high, the output SNR again de-
grades due to lack of sufficient resolution in each measurement.

Fig. 13. Hardware setup for the random PPM ADC.

This trade-off results in a sweetspot where the SNR performance
is the best. From Fig. 12, we observe that this sweetspot occurs
when the ADC resolution is chosen to be about 5 bits.

B. Prototype and Measurement Results

We now present experimental results obtained with the proto-
type 9-bit random PPM ADC and 9-bit regular PPM ADC. The
ramp generator, comparator and the two-step TDC, which are
part of both the random PPM and the regular PPM ADCs, are
implemented in 90 nm digital CMOS. The linear feedback shift
register-based (LFSR-based) random clock generation block is
implemented by programming Verilog code onto a field-pro-
grammable gate array (FPGA). The analog circuits operate with
a 1 V supply, while the digital blocks operate at near-threshold
from a 400 mV supply. The regular clock is a 64 MHz signal
giving a . The LFSR is 9 bits with taps at bin 5
and 9 resulting in a LFSR periodicity of 511. The entire evalua-
tion setup of the random PPMADC consists of four main blocks
as displayed in Fig. 13, an FPGA, the ADC, a logic analyzer and
a computer. The FPGA generates the start and the random clock
signals, which are input to the PPM ADC. The ADC measure-
ments are collected by the logic analyzer. The nonzero seed used
to initialize the LFSR system is assumed to be known during re-
construction, so that the sequence of ’s can be calculated.
A single tone input signal is sampled both by the random PPM

ADC prototype and the regular PPM ADC prototype, operating
at various sampling rates, and reconstructed using the PRSreco
algorithm. The results are displayed in Fig. 14. Also displayed
for convenience is the compression loss (root mean square error
of the reconstruction) on the right y-axis. Note that since the
ADC resolution is fixed, the compression achieved by the sam-
pling scheme only depends on the sub-sampling ratio . As
expected, the random PPM performs much better than the reg-
ular PPM which breaks down when the sub-sampling ratio is
around 0.7, whereas the random PPM works well for sub-sam-
pling ratios as low as 0.05. A compression ratio of 0.05 in the
random PPMADC and 0.7 in the regular PPMADC, both result
in the same compression loss of 0.77. Fig. 15 shows the recon-
struction of a 5-tone signal with frequencies arbitrarily chosen
from the Nyquist grid on [0, 1 MHz] (Nyquist rate MHz).
The multi-tone signal was sampled with the random PPM ADC
operating at a sampling frequency of about 173 KHz which
leads to a sampling percentage of about 8.65%. The SNR of the
recovered signal is 41.6 dB.
The measured power consumption of the PPM ADC system

is 14 (excluding digital post-processing). The analog and
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Fig. 14. Reconstruction of a single tone signal from samples collected by the
regular and the random PPM ADC prototypes operating at varying sampling
rates. The -axis on the right displays the corresponding root mean square (rms)
error.

Fig. 15. Reconstruction of a five-tone signal from samples collected by the
random PPM ADC with sampling rate at 8.65% of the Nyquist rate.

digital blocks each consume 7 . For the random PPM ADC
system, the expected improvement in the power by a factor of

(the sub-sampling ratio) is observed, however this does
not include the power consumed by the random clock gener-
ator and the comparator, both of which operate all the time. The
random clock signal is produced by the FPGA and the power
consumption of the FPGA itself is not a good indication of the
actual power needed since power is consumed by unnecessary
circuitry in the FPGA. Implementing the random clock gener-
ation on the CMOS IC along with the rest of the compressive
sensing ADC would only minimally increase the power con-
sumption of the IC as the LFSR system only requires on the
order of ten shift registers and a few gates. The PPM ADC itself
uses approximately 50 registers and gates [13], therefore, the
digital power consumption due to the addition of LFSR system,
is expected to increase by only 6%–8%. An additional power
reduction can be achieved by switching the continuous-time
comparator off, when not in use. Thus, the power consumption
of the random PPM ADC (with on-chip random clock gener-
ation) is estimated to be about . For a
random PPM ADC operating at 20% of the Nyquist sampling
rate ( ), the estimated power consumption is 3 .

VIII. CONCLUSION

We propose a new, low-power compressive-sampling analog
to digital converter, called the random PPMADC. It inherits the
advantages of time to digital conversion and also exploits com-
pressive sampling techniques, to improve the power efficiency
of data conversion. An existing PPMADC design is modified to
achieve a 9-bit random PPM ADC, through the use of a random
clocking technique. The new random design enables the re-
duction of the average sampling rate to sub-Nyquist levels and
thus reduces the ADC power consumption by a factor close to
the sub-sampling ratio. The random PPM performs much better
than a regular PPM operating at a sub-Nyquist sampling rate, in
terms of obtaining closer-to-benchmark output SNR and han-
dling signals that are less sparse. The proposed reconstruction
algorithm is not only faster (greedy pursuit versus basis pursuit
inspired algorithms in the literature for compressive sampling
ADCs) but also feasible for a hardware implementation. With
on-chip reconstruction and a low power front-end, the random
PPM ADC is attractive for power constrained applications such
as wireless sensor networks, as it reduces both the power con-
sumption and the amount of data that needs to be communicated
by each sensor node.

APPENDIX A
RECONSTRUCTION ALGORITHM PROPOSED IN [13]

Let be the input signal and be the measurements from
the PPM ADC. As discussed is the set of nonuniform samples
from . We can represent the measurement as where
is the nonuniform sampling operator. Let operator repre-

sent a low pass filter with cut-off frequency tuned to Nyquist
frequency. The algorithm used is as follows:

It is easy to see that , where is
the identity operator and .

and thus .
When the PPM ADC is operated at Nyquist rate, applying low
pass filter to nonuniform samples causes harmonic distortion
which can be corrected through the iterations. However, below
Nyquist rate, applying a low pass filter to nonuniform samples
causes severe aliasing in the frequency domain which cannot
be rectified through iterations. In other words, the operator
cannot be inverted through the algorithm used.

APPENDIX B
ADDITIONAL DESIGN DETAILS OF RANDOM PPM

Assume that the duration of the reference ramp, that is the
time for which the ramp is greater than zero in each period is
given by for some . For the original PPM,

, so as to satisfy the stability condition for the reconstruction
algorithm presented in Appendix A. Choosing

can cause overlap between adjacent ramps.
For example, when and there is an overlap.
There are two ways to deal with this issue. The first is to adjust
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Fig. 16. Example pdfs of , and .

the distribution of as .
The implemented prototype random PPMADC uses this adjust-
ment. Another way is to employ a second sampling system. The
sampling systems each produce a ramp in alternate periods and
sample the input alternatively in each period. Thus, there is no
overlap in the ramps and the original choice of distribution for
can be maintained, that is .

Note that are all still independently chosen. Also note that the
net power consumption can be kept almost same as before since
the two samplers would sample at half the original rate. Even
though we do not actually use two sampling systems in the pro-
totype random PPM ADC, we assume that the overlap between
adjacent ramps is allowed for theoretical simplicity. The pre-
sented “mathematical framework” thus closely matches the im-
plementation (actual or thought experiment).
The time points at which the random PPM ADC samples the

signal are given by . To further aid the analysis,
we assume that the phase of the input signal , is uni-
formly distributed in . This induces a probability distri-
bution on . The probability density function (pdf) of can be
obtained by convolving the pdfs of and (since and
are independent for all ). Dropping the for convenience, let

be the pdf of (not to be confused with spar-
sity of the signal ). Recall that is the on-time of the reference
ramp in each period. The pdf of is .
Thus convolving the two it is easy to see that pdf of
is given by

where is the cumulative distributive function of the
random variable . An example of and is shown in
the Fig. 16. These results are used in the proof of Lemma 1 in
Appendix C.

APPENDIX C
PROOF OF LEMMA 1

Proof:

where for convenience and
. Now, using the distribution of derived in Appendix B,

it can be proven that

Now it is easy to obtain that

Hence

Now (using and then
) we have

APPENDIX D
PROOF OF LEMMA 2

Proof: For any vector

The required result is now true from Lemma 1.
Now we will compute Var .

But first, consider the following:

After applying expectation, and using that and are in-
dependent for and also using the Lemma 1, we see that
the second term above can be ignored as it is . Hence
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. We will use this in the expansion

for as follows:

since, by Lemma 1, , is negligible for .
We can similarly obtain the expansion

The last term can be ignored (assuming signal sparsity ).
Now

APPENDIX E
PROOF OF THEOREM 3

Proof: First we will show that the PRSreco algorithm suc-
ceeds in identifying the top terms of the signal. We will then
derive the error guarantee.
Let us begin with signal exactly -sparse. For simplicity let

us assume that are the nonzeros. There exists
a such that . Let . For

, using the Chebyshev inequality we have

[using (3) from Lemma (2)]. Hence

Let be the smallest nonzero in . Again using Cheby-
shev inequality, for each of we have

(since ). Now, define Bernoulli random variables as
indicators of failure of the th coefficient estimator. That is

for all . Let and .
We have

Hence

Note that the factor 1/4 is chosen as an example to simplify the
presentation of the proof. Now let us move on to the second it-
eration of the algorithm. More than estimators which were
good in the first iteration are still good in the second iteration.
This is because the estimator depends on the same random
correlations (between and other columns of ) as the esti-
mator from the first iteration. Put the current approxima-
tion as defined in the PRSreco algorithm (see
Table I). Now for those coefficients whose estimators were not
good in the first iteration we have

like before, using the (3) from Lemma (2) applied to .
Now define a new for these estimators. Note that

(since there are less than terms in the
definition of ). Now as before we have

Hence by the end of second iteration number of good estima-
tors among the is with a
net . Going on this way at th
iteration, number of , with

. Similar statements can be ob-
tained about , i.e., about the estimators with . Hence,
after sufficient number of iterations (say ), all the estimators
are good which implies that all the nonzero terms will be iden-
tified by the algorithm with
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after absorbing some constants along with number of iterations
into the number of measurements. If is the sufficient number
of iterations at which all estimators are good, then

. Hence, an increase in number
of measurements by a factor of log is required. Note that the
above is a gross lower bound for the success probability. In re-
ality since all the estimators are highly dependent, the proba-
bility that they will be good together is higher than the product
of the individual success probabilities, which is the gross lower
bound produced by the above theory.
Now let the signal be -compressible (hence not exactly
-sparse). We start with as before. Again for
simplicity let the first elements of be the top terms. For

we assume that for some . Let
be the smallest coefficient in the head ( ) of .

Similarly let be the largest coefficient in the tail ( )
of . All the above arguments hold again except that for
the probabilities will involve in the following manner. For
example in the first iteration

(assuming ). Repeating the arguments from
above we show that the algorithm succeeds in identifying the
top -terms.
Now let us prove the error guarantee. Let us assume that
for the moment. Let us say the algorithm correctly identifies

the position of top terms in iterations. For any , at
iteration , for

. Summing up the inequalities, we get

where is the best -term approximation to . Now

This implies

For large enough we have

This is consistent with (4).
Now let for some vector . we have .

Following the arguments as before, we have

(since is the best -term approximation to ).
Now

We will have (4) by putting . This is true for
some where the denominator is the smallest
singular value of .
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