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 Abstract-A flexible, digital-dominant wireles
plemented in 65nm CMOS. The receive chain c
band LNA, mixers, and baseband amplifiers. A
ADC with embedded, configurable DT FIR/IIR
aliasing interferers. Interleaving of sampling 
ADC maximizes conversion rate. The receiver 
sensitivity, +33dB and +39dB adjacent and a
interferer rejection with 802.15.4 packets, r
-83dBm sensitivity, +41dB, +20MHz interfere
802.11 packets. 

I. INTRODUCTION 

 The modern day desire for ubiquitous co
multiple standards and bands necessitates the
flexible, software-configurable receivers. O
lenges of creating such receivers is the desig
configurable filters for rejecting aliasing inte
cent channels. Analog filters become difficult
reduced supply voltages of deep submicron p
filters require significant over-sampling with 
ADC, at the expense of power consumption,
vent aliasing of the interferer and to capture
signal in the presence of a strong interferer. 
 This work presents a better alternative of em
ware-configurable, discrete time (DT) filter
ADC. The DT filter attenuates interference
passive charge-sharing, so power consumptio
prove with process scaling. Compared to rece
arate DT filter stage [1,2], the embedded filter
tor area and saves energy by eliminating ch
between the filter and the ADC [3]. Configura
receiver to adapt to its environment and to dif
cation standards. For example, the receiver ca
operating in a “no filter” mode when no inter
channel activity is present. As the power and 
the interferer change, the receiver can respond
DT filter and optimally adjusting sampling ra
rameters. This 500MHz to 3.6GHz configur
verified with the 915MHz and 2450MHz ba
802.15.4 standard and the IEEE 802.11 standa

II. RECEIVER ARCHITECTURE 

 The receiver consists of direct conversion I
with all the necessary components to receive 
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switches are driven by a 2x LO div
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filtering and digitization by a 7-bit 
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 Details of the LNA, mixer, and 
amplifier chain are shown in Fig. 2
achieves low-power and wideband
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The parallel combination reduces the total inp
power consumption by a factor of 4 compared
common-gate or shunt feedback LNA, at the 
capacitor area. The output of the LNA is buffe
to passive NMOS mixer switches that drive a
amplifier. No inductors are used, in order to
range of carrier frequencies, to minimize cir
maintain compatibility with digital CMOS pro
 A 2x LO divider [5] generates non-overlapp
and Q LO switching signals. Self-mixing of th
process mismatch can induce a DC offset at 
the use of a 2x LO mitigates the offset error, 
ror can still saturate the baseband amplifiers 
nificant gain. Therefore, binary-weighed curre
current from the feedback resistors of the tran
plifier in order to cancel DC offset. 

III. SAR ADC WITH EMBEDDED D
FILTER (“SARFILTER ADC”)

A. Design of the DT Filter Response 
 A configurable DT FIR filter replaces co
band filtering.  The filter is created by selec
the SAR ADC input onto the unit capacitors 
DAC, as shown in Fig. 3. The tap weights a
FIR filter are implemented by sampling ont
groups of unit capacitors, Cunit, over multiple 
Charge-sharing of the samples immediately b
conversion implements the summation that 
create a FIR filtered output. 
 To create an IIR filter, the collected samples
charge-shared with a history capacitor, CIIR. F
filter response described by (1) is created by 
pling over 16 clock periods onto groups of 4C
After every 4th sample, the 4 previous sam
shared together and with CIIR, which is sized e
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B. Interleaved Sampling and SAR Operation
 The MSB capacitors of the DAC are duplic
the reduction of the ADC conversion rate, fco
lective sampling, which takes as many time u
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put resistance and 
d to an individual 
cost of coupling 

fered and coupled 
a transimpedance 
o support a wide 
rcuit area, and to 
ocesses. 
ing, differential I 
he LO signal and 
baseband. While 
even a small er-
due to their sig-

ent DACs source 
nsimpedance am-

DT 
) 

onventional base-
ctive sampling of 
of the capacitive 

and delays of the 
to different sized 
clock cycles [3]. 

before SAR ADC 
is necessary to 

s are periodically 
For example, the 
selectively sam-

Cunit each period. 
mples are charge-
equal to 32Cunit. 



�

�
��� � �� (1) 

ns 
cated to minimize 
onv, caused by se-
units as the num-
pling to begin on 

one MSB capacitor bank while the
LSB bank participate in SAR conv
This improvement in fconv is the ke
with enough notches to be placed at
of a wanted signal that is direct dow
notches reject aliasing interferers be
version occurs and prevent the al
wanted signal. For example, the 16
uses interleaving to achieve fconv o
pling rate, fs,filter, of 80MS/s. A 16-ta
which permits placement of an a
every multiple of fconv between 0 an
tion also facilitates the implement
cause sampling and charge-sharing
constant frequency, even through
process. 

C. Implementation Details 
 The modifications that have bee
SAR ADC architecture to impleme
are shown in Fig. 4. The capacitiv
cells per differential half-circuit. Th

Fig. 4 Interleaved sampling and SAR oper
through: (1) sampling onto MSBa, SAR wi
pling onto LSB (middle), (3) sampling onto 
(bottom), and (4) sampling onto LSB (middl

 
mpling onto capaci-
R conversion. 

Fig. 5 An example ideal combined filter resp
amplifier pole components. The DT contribu

10 20 30 40
-75
-60
-45
-30
-15

0

Frequency (

A
tte

n
ua

tio
n
 (d

B
) Combine

FIR

e other MSB bank and the 
version, as shown in Fig. 4. 
ey to creating an FIR filter 
t all of the alias frequencies 
wn-converted to DC. These 
efore analog-to-digital con-
liases from corrupting the 
6-tap filter shown in Fig. 5 
f 5MS/s with a filter sam-
ap filter creates 15 notches, 
alias suppressing notch at 
nd fs,filter. Interleaved opera-
tation of IIR filtering, be-

g with CIIR must occur at a 
hout the SAR conversion 

en made to the traditional 
ent interleaved DT filtering 
e DAC consists of 96 Cunit 
hese capacitors are equally 

 
rations requires the ADC to cycle 
th MSBb and LSB (top), (2) sam-
MSBb, SAR with MSBa and LSB 
le). Some switches are omitted. 

 
ponse and its DT FIR/IIR and 
ution is described by (1). 

50 60 70 80
(MHz)

ed IIR
Amp. Poles



divided into MSBa, MSBb, and LSB banks. M
cate of MSBa and permits the implementatio
sampling and SAR operations. Interleaving al
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D. Ideal Receiver Filter Response 
 The overall filter response consists of SAR
and baseband amplifier pole components, as 
The DT FIR and IIR filter components are d
The FIR filter creates narrowband anti-alia
multiples of fconv and the IIR filter poles pr
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IV. RESULTS 

 The design is implemented in a 1P9M 65n
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2450MHz bands and 802.11, respectively. 
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Fig. 6 Die photo. 
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Although the tap lengths of the two
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er pass-band frequency of 100MHz
cost of power consumption. When
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B. Packet Tests 
 The entire receiver is verified by
and 802.11 packets. Matched filter
phase correction is performed off-c
performed as required by the IEEE
that only the 20 byte payload is ana
sion of the 6 byte header from error
error in measured sensitivity.) Fconv
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responses for the DT filter described by (1)
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+33dB and +39dB adjacent and alternate channel interferer 
rejection with 2450MHz packets. These results exceed the 
requirements of the 802.15.4 standard. In 802.11 tests, the 
receiver achieves -83dBm sensitivity and rejects a +20MHz, 
+41dB unframed interferer that is 802.11 coded and mod-
ulated at 1Mbps (11Mchip/s). 

V. CONCLUSION 

 A software-configurable DT filter embedded within a SAR-
filter ADC enables the creation of a flexible wireless receiver 
that can adapt to the requirements of a wide range of current 
and future communication standards and bands. 
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TABLE I 

CHIP SUMMARY 
Technology 65nm 1P9M w/MIMCAP 
Active Area 0.24mm2 
Carrier Frequency Range 500MHz to 3.6GHz 
Gain, from LNA to last amplifier 
stage �60dB 

S11 < -10.5dB 
Noise Figure (simulated) 9dB 
IIP3, in-band, from LNA to last 
amplifier stage -45dBm 

ENOB �5b, incl. front-end and baseband am-
plifier noise and distortion 

Maximum fconv, Eq. (1) DT Filter 21.25MS/s 
Configurable Filter Tap Length / 
Weight 16 to 64 / 0 to 6Cunit 

Power 
Eq. (1) DT 
Filter 

Analog 5.24mW @ 1.0V 
2.79mW @ 0.85V 

Digital 
2.16mW @ 1.0V, fconv=11MS/s 
0.65mW @ 0.9V, fconv=5MS/s 
0.30mW @ 0.9V, fconv=2MS/s 

Clocks, LO Divider 2.07mW, 4.82GHz 2xLO 
0.89mW, 1.82GHz 2xLO 

Total 
9.47mW, 802.11 
5.51mW, 802.15.4 2450MHz 
3.98mW, 802.15.4 915MHz 

802.11, Eq. (1) DT Filter, 
fconv=11MS/s 
Sensitivity and Interferer Rejection 

-83dBm; +20MHz, +41dB unframed 

802.15.4 2450MHz, Eq. (1) Filter, 
fconv=5MS/s 
Sensitivity and Interferer Rejection 

-92dBm; +5MHz, +33dB; +10MHz, 
+39dB 

802.15.4 915MHz, Eq. (1) Filter, 
fconv=2MS/s 
Sensitivity and Interferer Rejection 

-99dBm; +2MHz, +30dB; +4MHz, 
+33dB 

 

  
Fig. 8 Packet error rate (PER) and frame error rate (FER) as a function of signal power and interferer power (relative to fixed wanted signal power) for IEEE 
802.15.4 915MHz and 2450MHz bands and IEEE 802.11. Each test point represents the error rate calculated from receiving 250 packets. The gray line indicates 
the maximum PER or FER allowed by the IEEE standards. 
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